Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The permanent magnetic linear contactless displacement (PLCD) sensor is a new type of displacement sensor operating on the magnetic inductive principle. It has many excellent properties and has already been used for many applications. In this article a Micro-PLCD sensor which can be used for microelectromechanical system (MEMS) measurements is designed and simulated with the CST EM STUDIO(®) software, including building a virtual model, magnetostatic calculations, low frequency calculations, steady current calculations and thermal calculations. The influence of some important parameters such as air gap dimension, working frequency, coil current and eddy currents etc. is studied in depth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231219PMC
http://dx.doi.org/10.3390/s100908424DOI Listing

Publication Analysis

Top Keywords

permanent magnetic
8
magnetic linear
8
linear contactless
8
contactless displacement
8
displacement sensor
8
combined simulation
4
simulation micro
4
micro permanent
4
sensor
4
sensor permanent
4

Similar Publications

With the increasing demand for wind energy in the electric power generation industry, optimizing robust and efficient control strategies is essential for a wind energy conversion system (WECS). In this regard, this study proposes a novel hybrid control strategy for wind power systems directly coupled to a permanent-magnet synchronous generator (PMSG). The contribution of this work is to propose a control strategy design based on a combination of the nonlinear Backstepping approach for system stabilization according to Lyapunov theory and the application of artificial neural network to maximize energy harvesting regardless of wind speed fluctuations.

View Article and Find Full Text PDF

A novel medium-current (up to 20 mA), low normalized beam emittance (<1 π mm mrad) electron cyclotron resonance microwave H+ ion source has been developed at the Center for Energy Research in Budapest, Hungary. This high-stability design targets an energy ripple below 1% while delivering a continuous or pulsed proton beam with adjustable pulse duration (0.1-10 ms) and frequency (0.

View Article and Find Full Text PDF

Adhesive materials are widely used in microvascular decompression for treating neurovascular compression syndromes. They play an important role in the critical step of vessel fixation. Recently, completely autologous fibrin glue produced solely from a patient's own plasma was developed.

View Article and Find Full Text PDF

Simulated Galactic Cosmic Rays effects on fungal materials: towards biotechnological radiation protection for space habitats.

Int J Radiat Biol

September 2025

NASA Space Radiation Laboratory, Collider-Accelerator Dept., Brookhaven National Laboratory, Upton, NY, USA.

Purpose: Human space exploration is on an upward trajectory with new space stations being manufactured for scientific experiments, industrial development, and space tourism. These spacecraft in LEO and MEO will take advantage of Earth's magnetic field for radiation protection. Astronauts on the International Space Station receive an average radiation dose of 25 µSV/hour; around 250 times greater than the average sea level dose rate.

View Article and Find Full Text PDF