Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
An effective Hamiltonian technique is used to investigate the effect of applying curled electric fields on physical properties of stress-free BiFeO(3) dots being under open-circuit electrical boundary conditions. It is discovered that such fields can lead to a control of not only the magnitude but also the direction of the magnetization. Such control originates from the field-induced transformation or switching of electrical vortices and their couplings with oxygen octahedral tilts and magnetic dipoles. This control involves striking intermediate states and constitutes a novel phenomenon that can be termed a "magnetotoroidic" effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.107.127202 | DOI Listing |