98%
921
2 minutes
20
Objective: FUT2 encodes the α(1,2) fucosyltransferase that determines blood group secretor status. Homozygotes (A/A) for the common nonsense mutation rs601338A>G (W143X) are nonsecretors and are unable to express histo-blood group antigens in secretions and on mucosal surfaces. This mutation has been reported to provide resistance to Norovirus and susceptibility to Crohn's disease, and hence we aimed to determine if it also affects risk of type 1 diabetes.
Research Design And Methods: rs601338A>G was genotyped in 8,344 patients with type 1 diabetes, 10,008 control subjects, and 3,360 type 1 diabetic families. Logistic regression models were used to analyze the case-control collection, and conditional logistic regression was used to analyze the family collection. RESULTS The nonsecretor A/A genotype of rs601338A>G was found to confer susceptibility to type 1 diabetes in both the case-control and family collections (odds ratio for AA 1.29 [95% CI 1.20-1.37] and relative risk for AA 1.22 [95% CI = 1.12-1.32]; combined P = 4.3 × 10(-18)), based on a recessive effects model.
Conclusions: Our findings linking FUT2 and type 1 diabetes highlight the intriguing relationship between host resistance to infections and susceptibility to autoimmune disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3198057 | PMC |
http://dx.doi.org/10.2337/db11-0638 | DOI Listing |
JMIR Public Health Surveill
September 2025
Earth Observation Centre (EOC), Institute of Climate Change, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.
Background: Neighborhoods resulting from rapid urbanization processes are often saturated with eateries for local communities, potentially increasing exposure to unhealthy foods and creating diabetogenic residential habitats.
Objective: We examined the association between proximity of commercial food outlets to local neighborhood residences and type 2 diabetes (T2D) cases to explore how local T2D rates vary by location and provide policy-driven metrics to monitor food outlet density as a potential control for high local T2D rates.
Methods: This cross-sectional ecological study included 11,354 patients with active T2D aged ≥20 years geocoded using approximate neighborhood residence aggregated to area-level rates and counts by subdistricts (mukims) in Penang, northern Malaysia.
Am J Physiol Lung Cell Mol Physiol
September 2025
Division of Pulmonary Medicine, Cincinnati Children's Hospital, Cincinnati, OH.
Cystic Fibrosis (CF) is characterized by impaired mucociliary clearance and pulmonary infections. Accumulating evidence suggests that fundamentally abnormal inflammatory responses also contribute to CF pathology. TGFβ, a pleiotropic cytokine, is a modifier of CF lung disease; its mechanism of action in CF is unclear.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
September 2025
Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA.
Cystathionine γ-lyase (CSE) produces hydrogen sulfide (HS), a vasodilator critical for vascular function. While its systemic effects are well-documented, its role in erectile physiology remains unclear. This study investigated the impact of CSE deletion on vascular and erectile tissue reactivity.
View Article and Find Full Text PDFCell Rep Med
July 2025
Sorbonne Université, INSERM U1269, Nutrition and obesities: systemic approach research group, Nutriomics, Paris F-75013, France. Electronic address:
Fibrosis in visceral white adipose tissue (vWAT) is closely associated with tissue dysfunction and systemic metabolic disturbances in obesity. Identifying pathways amenable to drug intervention to prevent fibrotic changes in vWAT is a critical step in addressing the array of metabolic complications associated with obesity. CD9 adipose progenitors (Progs) are key drivers of vWAT fibrosis.
View Article and Find Full Text PDFNephrol Dial Transplant
September 2025
Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Background: We investigated circulating protein profiles and molecular pathways among various chronic kidney disease (CKD) etiologies to study its underlying molecular heterogeneity.
Methods: We conducted a proteomic biomarker analysis in the DAPA-CKD trial recruiting adults with and without type 2 diabetes with an eGFR of 25 to 75 mL/min/1.73m2 and a UACR of 200 to 5000 mg/g.