A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

High throughput object-based image analysis of β-amyloid plaques in human and transgenic mouse brain. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Advances in imaging technology have enabled automated approaches for quantitative image analysis. In this study, a high content object based image analysis method was developed for quantification of β-amyloid (Aβ) plaques in postmortem brains of Alzheimer's disease (AD) subjects and in transgenic mice over overexpressing Aβ. Digital images acquired from immunohistochemically stained sections of the superior frontal gyrus were analyzed for Aβ plaque burden using a Definiens object-based segmentation approach. Blinded evaluation of Aβ stained sections from AD and aged matched human subjects accurately identified AD cases with one exception. Brains from transgenic mice overexpressing Aβ (PS1APP mice) were also evaluated by our Definiens object based image analysis approach. We observed an age-dependent increase in the amount of Aβ plaque load that we quantified in both the hippocampus and cortex. From the contralateral hemisphere, we measured the amount of Aβ in brain homogenates biochemically and observed a significant correlation between our biochemical measurements and those that we measured by our object based Definiens system in the hippocampus. Assessment of Aβ plaque load in PS1APP mice using a manual segmentation technique (Image-Pro Plus) confirmed the results of our object-based image analysis approach. Image acquisition and analysis of 32 stained human slides and 100 mouse slides were executed in 8 h and 22 h, respectively supporting the relatively high throughput features of the Definiens platform. The data show that digital imaging combined with object based image analysis is a reliable and efficient approach to quantifying Aβ plaques in human and mouse brain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneumeth.2011.10.003DOI Listing

Publication Analysis

Top Keywords

image analysis
24
object based
16
based image
12
aβ plaque
12
9
high throughput
8
object-based image
8
plaques human
8
mouse brain
8
aβ plaques
8

Similar Publications