Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Transporters, such as multidrug resistance P-glycoproteins (MDR), multidrug resistance-related proteins (MRP) and organic anion transporters (OATs), are involved in xenobiotic metabolism, particularly the cellular uptake or efflux of xenobiotics (and endobiotics) or their metabolites. The olfactory epithelium is exposed to both inhaled xenobiotics and those coming from systemic circulation. This tissue has been described as a pathway for xenobiotics to the brain via olfactory perineural space. Thereby, olfactory transporters and xenobiotic metabolizing enzymes, dedicated to the inactivation and the elimination of xenobiotics, have been involved in the toxicological protection of the brain, the olfactory epithelium itself and the whole body. These proteins could also have a role in the preservation of the olfactory sensitivity by inactivation and clearance of the excess of odorant molecules from the perireceptor space. The goal of the present study was to increase our understanding of the expression and the localization of transporters in this tissue. For most of the studied transporters, we observed an opposite mRNA expression pattern (RT-PCR) in the olfactory epithelium compared to the liver, which is considered to be the main metabolic organ. Olfactory epithelium mainly expressed efflux transporters (MRP, MDR). However, a similar pattern was observed between the olfactory epithelium and the olfactory bulb. We also demonstrate distinct cellular immunolocalization of the transporters in the olfactory epithelium. As previously reported, Mrp1 was mainly found in the supranuclear portions of supporting cells. In addition, Mrp3 and Mrp5 proteins, which were detected for the first time in olfactory epithelium, were localized to the olfactory neuron layer, while Mdr1 was localized to the capillary endothelium of lymphatic vessels in the subepithelial region. The pattern of expression and the distinct localization of the olfactory transporters showed in this work may highlight on their specific function in the whole olfactory epithelium.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2011.10.018DOI Listing

Publication Analysis

Top Keywords

olfactory epithelium
32
olfactory
15
transporters
9
epithelium
8
brain olfactory
8
olfactory transporters
8
expression
4
expression differential
4
differential localization
4
localization xenobiotic
4

Similar Publications

Nasal cytology is evolving into a promising tool for diagnosing neurological and psychiatric disorders, especially those such as Alzheimer's and Parkinson's diseases. Moreover, recent research has indicated that biomarkers differ greatly between samples taken before and after death. Nasal cytology might help to identify the early stages of cognitive decline.

View Article and Find Full Text PDF

Background: Early identification of pathological α-synuclein deposition (αSynD) may improve understanding of Lewy body disorder (LBD) progression and enable timely disease-modifying treatments.

Objectives: We investigated αSynD using a seed amplification assay and assessed prodromal LBD symptoms in individuals with idiopathic olfactory dysfunction (iOD).

Methods: In this cross-sectional, case-control study, we included iOD participants and normosmic healthy controls (HC) aged 55 to 75 years without diagnoses of dementia with Lewy bodies, Parkinson's disease (PD), or other major neurological disorders.

View Article and Find Full Text PDF

Drug delivery to the central nervous system (CNS) is primarily hindered by the blood-brain barrier (BBB). To address this, mucoadhesive formulations have been designed to prolong residence time at the application site. In this study, we comprehensively characterized the physicochemical and mucoadhesive properties of hyaluronic acid tyramine (HATA) photocrosslinked hydrogels using rheological methods, nanoindentation, contact angle goniometry, and advanced confocal microscopy.

View Article and Find Full Text PDF

Diverse epigenetic regulatory mechanisms ensure and regulate cellular diversity. Among others, the histone 3 lysine 9 me3 (H3K9me3) post translational modification participates in silencing lineage-inappropriate genes. H3K9me3 restricts access of transcription factors and other regulatory proteins to cell-fate controlled genes.

View Article and Find Full Text PDF

Grueneberg Ganglion: An Unexplored Site for Intranasal Drug Delivery in Alzheimer's Disease.

ACS Chem Neurosci

September 2025

College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21912, Republic of Korea.

Neurological disorders such as Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Multiple Sclerosis, and Amyotrophic Lateral Sclerosis pose significant challenges for treatment. Reasons for the difficulty in finding cures for these conditions include complications in early diagnosis, progressive and irreversible neuronal damage, and the presence of the blood-brain barrier (BBB), which hinders the delivery of drugs to the affected areas of the brain. Intranasal (INL) drug administration has increasingly gained popularity among researchers for targeting neurological conditions, because of its ability to bypass the BBB.

View Article and Find Full Text PDF