A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Recent clinical and molecular insights into emerging artemisinin resistance in Plasmodium falciparum. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose Of Review: Artemisinin-based combination therapies (ACTs) have been deployed globally with remarkable success for more than 10 years without having lost their malaria treatment efficacy. However, recent reports from the Thai-Cambodian border reveal evidence of emerging resistance to artemisinins. The latest published clinical and molecular findings are summarized herein.

Recent Findings: Clinical studies have identified delayed parasite clearance time as the most robust marker of artemisinin resistance. Resistance has only been documented from South-east Asia and has been observed in isolates that show no significant decrease in drug susceptibility in vitro. Genetic investigations have yet to uncover robust molecular markers. In-vitro studies have identified parasite quiescence or dormancy mechanisms that protect early 'ring-stage' intra-erythrocytic parasites against short-term artemisinin exposure. This might be achieved by reducing the rate of hemoglobin degradation, important for artemisinin bioactivation.

Summary: Should ACTs fail, no suitable alternatives exist as first-line treatments of P. falciparum malaria. Intensified efforts are essential to monitor the spread of resistance, define therapeutic and operational strategies to counter its impact, and understand its molecular basis. Success in these areas is critical to ensuring that recent gains in reducing the burden of malaria are not lost.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3268008PMC
http://dx.doi.org/10.1097/QCO.0b013e32834cd3edDOI Listing

Publication Analysis

Top Keywords

clinical molecular
8
artemisinin resistance
8
studies identified
8
resistance
5
molecular insights
4
insights emerging
4
artemisinin
4
emerging artemisinin
4
resistance plasmodium
4
plasmodium falciparum
4

Similar Publications