98%
921
2 minutes
20
This literature and clinical review identifies and evaluates the various techniques for removing failed, fractured, or peri-implantitis-affected nonmobile implants. The article also discusses the limitations and complications that may arise with the various techniques during removal procedures. Based on specific clinical factors such as anatomical conditions, implant design, condition of implant connection, bone quality, and remaining amount of bone integrated to the implant body, a decision tree is proposed to help clinicians determine the most appropriate minimally invasive technique.
Download full-text PDF |
Source |
---|
Biomater Adv
September 2025
Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy.
Tailoring surface characteristics is key to guiding scaffold interaction with the biological environment, promoting successful biointegration while minimizing immune responses and inflammation. In cardiac tissue engineering, polyvinylidene fluoride (PVDF) is a material of choice for its intrinsic piezoelectric properties, which can be enhanced through electrospinning, also enabling the fabrication of nanofibrous structures mimicking native tissue. However, the inherent hydrophobicity of PVDF can hinder its integration with biological tissues.
View Article and Find Full Text PDFAnat Sci Educ
September 2025
Human Anatomy, Vita-Salute San Raffaele University, Milan, Italy.
As emerging technologies reshape both the body and how we represent it, anatomical education stands at a threshold. Virtual dissection tools, AI-generated images, and immersive platforms are redefining how students learn anatomy, while real-world bodies are becoming hybridized through implants, neural interfaces, and bioengineered components. This Viewpoint explores what it means to teach human anatomy when the body is no longer entirely natural, and the image is no longer entirely real.
View Article and Find Full Text PDFEur J Obstet Gynecol Reprod Biol
August 2025
Reproductive Medicine Center, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen 518000 Guangdong, China; Shenzhen Clinical Research Center for Obstetrics & Gynecology and Reproductive System Diseases, Shenzhen 518000 Guangdong, China. Electronic address: szfyart
Objective: This study investigates the association between alobar holoprosencephaly (HPE) and de novo germline microdeletions in the Xq25 region. To develop a Preimplantation Genetic Testing for Monogenic Disorders (PGT-M) based workflow enabling high-resolution preimplantation detection of sub-Mb microdeletions, overcoming the >1 Mb resolution limit of conventional whole genome amplification(WGA) copy number variation(CNV) sequencing to identify causative Xq25 variants and prevent pathogenic microdeletion transmission.
Methods: This study presents a clinical case involving a couple with an adverse obstetric history accompanied by two occurrences of HPE.
Colloids Surf B Biointerfaces
August 2025
Department of Orthopedics, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, China. Electronic address:
Infected wounds remain a major clinical challenge due to bacterial invasion, which disrupts the natural healing cascade through excessive reactive oxygen species (ROS) generation, severe vascular damage, and persistent inflammation. Inspired by the catechol-rich adhesive domains of mussel foot proteins, we developed an extracellular matrix (ECM)-mimetic polyethylene glycol (PEG) hydrogel incorporating polydopamine (PDA)-functionalized zinc oxide nanoparticles (ZnONPs) for infected wound therapy. The amino acid-functionalized PEG hydrogel reproduces ECM-like properties to facilitate cell migration and efficient exudate management; however, its lack of intrinsic antimicrobial activity limits therapeutic efficacy.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
The Materials Engineering Department, Faculty of Engineering, Kasetsart University, Phaholyothin Rd., Bangkok 10900, Thailand. Electronic address:
A prototype bioactive calcium phosphate model-specifically hydroxyapatite (HA) derived from eggshells-was developed using a sodium silicate (NaSiO) solution as an inorganic binder, precursor, and reinforcing agent, in combination with collagen nanofibers for bone engineering applications. The sodium silicate solution, functioning as a waterglass adhesive, introduced cohesive forces within the hydroxyapatite matrix, thereby enhancing its physical, chemical, and mechanical properties. Eggshell-derived bioactive hydroxyapatite offers several advantages, including non-toxicity, biocompatibility, collagen adhesion, and the ability to mimic bone structure, making it suitable for tissue engineering.
View Article and Find Full Text PDF