Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We present experimental and theoretical evidence of sequential redox processes and structural transformations occurring by increasing temperature in a metal/oxide/metal system obtained via deposition of Fe atoms onto a z'-TiO(1.25)/Pt(111) ultrathin film in UHV. The initial reduction of the z'-TiO(x) phase by Fe at room temperature is followed by Fe diffusion and partial penetration into the substrate at intermediate temperatures. This triggers the formation of a bi-component material in which mixed FeO/TiO(2) nanoislands coexist on a h-TiO(1.14) ultrathin film, notably restructured (from rectangular to hexagonal) and reduced (from Ti : O = 1 : 1.25 to 1 : 1.14) with respect to the original TiO(1.25) phase. Further heating recovers the pristine z'-TiO(x) phase while Fe completely dissolves into the substrate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c1cp22013f | DOI Listing |