A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Investigation of the emission mechanism in milled SrAl₂O₄:Eu, Dy using optical and synchrotron X-ray spectroscopy. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

There currently exists much debate as to the active state related to the "long afterglow" effect in europium doped oxide materials. Redox couples that consist of Eu(+/2+) and Eu(2+/3+) are discussed, but no common answer is currently accepted. Here, we present a comparison of the optical properties of a commercially available SrAl(2)O(4):Eu, Dy phosphor, as a function of nanoparticle size reduction via dry mechanical milling. X-ray and optical spectroscopic data indicate a significant decrease in phosphorescence efficiency and an increase in laser stimulated emission efficiency as near surface Eu(2+) ions are oxidized to Eu(3+) as a consequence of increased exposure during the milling process. These results show evidence only for Eu(2+/3+) oxidation states, suggesting the mechanism related to long afterglow effect does not arise from Eu(+) species. We also suggest that size reduction, as a rule, cannot be universally applied to improve optical properties of nanostructures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am200710jDOI Listing

Publication Analysis

Top Keywords

optical properties
8
size reduction
8
investigation emission
4
emission mechanism
4
mechanism milled
4
milled sral₂o₄eu
4
optical
4
sral₂o₄eu optical
4
optical synchrotron
4
synchrotron x-ray
4

Similar Publications