98%
921
2 minutes
20
An implantable centrifugal blood pump has been developed with original features for a ventricle assist device (VAD). This pump is part of a multicenter and international study with objective to offer simple, affordable, and reliable devices to developing countries. Previous computational fluid dynamics investigations were performed followed by prototyping and in vitro tests. Also, previous blood tests for assessment of hemolysis showed mean normalized index of hemolysis (NIH) results of 0.0054 ± 2.46 × 10⁻³ mg/100 L (at 5 L/min and 100 mm Hg). To precede in vivo evaluation, measurements of magnetic coupling interference and enhancements of actuator control were necessary. Methodology was based on the study of two different work situations (1 and 2) studied with two different types of motors (A and B). Situation 1 is when the rotor of pump is closest to the motor and situation 2 its opposite. Torque and mechanical power were collected with a dynamometer (80 g/cm) and then plotted and compared for two situations and both motors. The results showed that motor A has better mechanical behavior and less influence of coupling. Results for situation 1 showed that it is more often under magnetic coupling influence than situation 2. The studies lead to the conclusion that motor A is the best option for in vivo studies as it has less influence of magnetic coupling in both situations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/MAT.0b013e31823005dc | DOI Listing |
Langmuir
September 2025
Engineering Technology Research Center of Preparation and Application of Industrial Ceramics of Anhui Province, Engineering Research Center of High-frequency Soft Magnetic Materials and Ceramic Powder Materials of Anhui Province, School of Chemistry and Material Engineering, Chaohu University, Chaoh
In this study, a MoC-MoO@NCrGO-900 composite catalyst comprising two-dimensional nitrogen-doped reduced graphene oxide (NCrGO) and ultrasmall molybdenum carbide-molybdenum dioxide (MoC-MoO) heterojunctions was synthesized. The optimized catalyst exhibited an outstanding oxidative desulfurization (ODS) performance. Specifically, a model oil containing 4000 ppm sulfur was completely desulfurized within 30 min, with a desulfurization efficiency of 98.
View Article and Find Full Text PDFInorg Chem
September 2025
Department of Chemistry, Panskura Banamali College, Panskura RS, Purba Medinipur, WB 721152, India.
We report the synthesis and characterization of a new Schiff base ligand (HL), derived from 2-picolylamine and 2-hydroxy-3-methoxy-5-methylbenzaldehyde. Its reaction with Ni(NO)·6HO and Ln(NO)·HO (Ln = Gd, Tb, Dy) in the presence of triethylamine affords a carbonato-bridged family of heterobimetallic NiLn complexes: [NiLn(L)(L')(μ-CO)(NO)]·MeOH·HO (). During the complexation reaction, ligand HL undergoes an oxidation, followed by C-C coupling to generate a secondary ligand (HL').
View Article and Find Full Text PDFMagn Reson Chem
September 2025
Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan.
We reveal contrasting behaviors in molecular motion between the two materials, including the identification of resonance-enhanced dynamic features in elastomers. We present a depth-resolved analysis of molecular dynamics in semicrystalline polytetrafluoroethylene (PTFE) and fully amorphous fluorinated elastomer (SIFEL) films using static-gradient solid-state F NMR imaging. By measuring spin-lattice relaxation rates ( ) at multiple frequencies and evaluating the corresponding spectral density functions, we reveal distinct dynamic behaviors between the two materials.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
September 2025
Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China.
Fruit and fruit-based products are a valuable source of essential nutrients, critical for food security, and drive economic productivity with minimal inputs. The significant rise in global demand for high-quality imported fruit and fruit-based products reflects a shift in consumer awareness and interest in the products origin and potential health-promoting bioactive compounds. Analytical techniques such as liquid chromatography, gas chromatography, inductively coupled plasma techniques, isotope-ratio mass spectrometry (IRMS), near infrared (NIR) spectroscopy, visible near infrared (VIS-NIR) spectroscopy, hyperspectral imaging (HSI), mid-infrared (MIR) spectroscopy, Raman spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, fluorescence spectroscopy, terahertz spectroscopy, dielectric spectroscopy, electronic nose (e-nose), and electronic tongue (e-tongue) coupled with supervised and unsupervised chemometrics can be employed for traceability, authentication, and bioactive profiling of fruit and fruit-based products.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, 110016, Liaoning, People's Republic of China.
A novel dual-mode sensing system integrating a magnetic core-shell CuFeO/Cu/MnO nanozyme with a stimuli-responsive agarose-deep eutectic solvent hydrogel (DES-Aga) is reported. The nanozyme exhibits exceptional oxidase-like activity, characterized by a low Michaelis constant (K = 0.14 mM) and high catalytic efficiency (V = 1.
View Article and Find Full Text PDF