Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Expert judgements are essential when time and resources are stretched or we face novel dilemmas requiring fast solutions. Good advice can save lives and large sums of money. Typically, experts are defined by their qualifications, track record and experience. The social expectation hypothesis argues that more highly regarded and more experienced experts will give better advice. We asked experts to predict how they will perform, and how their peers will perform, on sets of questions. The results indicate that the way experts regard each other is consistent, but unfortunately, ranks are a poor guide to actual performance. Expert advice will be more accurate if technical decisions routinely use broadly-defined expert groups, structured question protocols and feedback.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3146531 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0022998 | PLOS |