A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Compound-specific bromine isotope analysis of methyl bromide using gas chromatography hyphenated with inductively coupled plasma multiple-collector mass spectrometry. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Methyl bromide is the most important natural bromine contributor to stratospheric ozone depletion, yet there are still large uncertainties regarding quantification of its sources and sinks. The stable bromine isotope composition of CH(3)Br is potentially a powerful tool to apportion its sources and to study both its transport and its reactive fate. A novel compound-specific method to measure (81)Br/(79)Br isotope ratios in CH(3)Br using gas chromatography hyphenated with inductively coupled plasma multiple-collector mass spectrometry (GC/MCICPMS) was developed. Sample amounts of >40 ng could be measured with a precision of 0.1‰ (1σ, n = 3). The method results are reproducible over the long term as shown with 36 analyses acquired over 3 months, yielding a standard deviation (1σ) better than 0.4‰. This new method demonstrates for the first time Br isotope ratio determination in gaseous brominated samples. It is three orders of magnitude more sensitive than previously existing isotope ratio mass spectrometry methods for Br isotope determination of other organobromines, thus allowing applications towards ambient atmospheric samples.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.5144DOI Listing

Publication Analysis

Top Keywords

mass spectrometry
12
bromine isotope
8
methyl bromide
8
gas chromatography
8
chromatography hyphenated
8
hyphenated inductively
8
inductively coupled
8
coupled plasma
8
plasma multiple-collector
8
multiple-collector mass
8

Similar Publications