Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The reaction of potassium ferrate(VI), K(2)FeO(4), with weak-acid dissociable cyanides--namely, K(2)[Zn(CN)(4)], K(2)[Cd(CN)(4)], K(2)[Ni(CN)(4)], and K(3)[Cu(CN)(4)]--results in the formation of iron(III) oxyhydroxide nanoparticles that differ in size, crystal structure, and surface area. During cyanide oxidation and the simultaneous reduction of iron(VI), zinc(II), copper(II), and cadmium(II), metallic ions are almost completely removed from solution due to their coprecipitation with the iron(III) oxyhydroxides including 2-line ferrihydrite, 7-line ferrihydrite, and/or goethite. Based on the results of XRD, Mössbauer and IR spectroscopies, as well as TEM, X-ray photoelectron emission spectroscopy, and Brunauer-Emmett-Teller measurements, we suggest three scavenging mechanisms for the removal of metals including their incorporation into the ferrihydrite crystal structure, the formation of a separate phase, and their adsorption onto the precipitate surface. Zn and Cu are preferentially and almost completely incorporated into the crystal structure of the iron(III) oxyhydroxides; the formation of the Cd-bearing, X-ray amorphous phase, together with Cd carbonate is the principal mechanism of Cd removal. Interestingly, Ni remains predominantly in solution due to the key role of nickel(II) carbonate, which exhibits a solubility product constant several orders of magnitude higher than the carbonates of the other metals. Traces of Ni, identified in the iron(III) precipitate, are exclusively adsorbed onto the large surface area of nanoparticles. We discuss the relationship between the crystal structure of iron(III) oxyhydroxides and the mechanism of metal removal, as well as the linear relationship observed between the rate constant and the surface area of precipitates.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201100711DOI Listing

Publication Analysis

Top Keywords

ironiii oxyhydroxides
16
crystal structure
16
surface area
12
removal metals
8
structure ironiii
8
ironiii
6
mechanisms efficiency
4
efficiency simultaneous
4
removal
4
simultaneous removal
4

Similar Publications

Iron(III) (oxyhydr)oxide minerals with varying particle sizes commonly coexist in natural environments and are susceptible to both chemical and microbial reduction, affecting the fate and mobility of trace elements, nutrients, and pollutants. The size-dependent reduction behavior of iron (oxyhydr)oxides in single and mixed mineral systems remains poorly understood. In this study, we used microbial and mediated electrochemical reduction approaches to investigate the reduction kinetics and extents of goethite and hematite.

View Article and Find Full Text PDF

Designing advanced materials that effectively mitigate the poor cycle life of battery-type electrodes with high specific capacities is crucial for next-generation energy storage systems. Herein, graphene oxide-ceria (GO-CeO) nanocomposite synthesized via a facile wet chemical route is explored as cathode for high-performance supercapacitors. The morphological analysis suggests fine ceria (CeO) nanoparticles dispersed over ultrathin graphene oxide (GO) sheets while structural studies reveal face-centered cubic phase of CeO in the nanocomposite.

View Article and Find Full Text PDF

Understanding the nucleation of iron oxides and the underlying hydrolysis of aqueous iron species is still challenging, and molecular-level insights into the orchestrated response of water, especially at the hydrolysis interface, are lacking. We follow iron(III) hydrolysis in the presence of a synthetic bacterial iron nucleator, which is a magnetosome membrane specific peptide, by using a constant pH titration technique. Three distinct hydrolysis regimes were identified.

View Article and Find Full Text PDF

Nanostructured iron(III) compounds are promising food fortificants with desirable iron bioavailability and food compatibility. Here, gum arabic (GA) solubilized 252 mg of iron(III) per g at neutral pH in the form of GA-stabilized ferric oxyhydroxide nanoparticles (GA-FeONPs) with Z-average size of 142.7 ± 5.

View Article and Find Full Text PDF

Role of microbial iron reduction in arsenic metabolism from soil particle size fractions in simulated human gastrointestinal tract.

Environ Int

April 2023

College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China.

Gut microbiota provides protection against arsenic (As) induced toxicity, and As metabolism is considered an important part of risk assessment associated with soil As exposures. However, little is known about microbial iron(III) reduction and its role in metabolism of soil-bound As in the human gut. Here, we determined the dissolution and transformation of As and Fe from incidental ingestion of contaminated soils as a function of particle size (<250 μm, 100-250 μm, 50-100 μm and < 50 μm).

View Article and Find Full Text PDF