A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Correction methods for organic carbon artifacts when using quartz-fiber filters in large particulate matter monitoring networks: the regression method and other options. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sampling and handling artifacts can bias filter-based measurements of particulate organic carbon (OC). Several measurement-based methods for OC artifact reduction and/or estimation are currently used in research-grade field studies. OC frequently is not artifact-corrected in large routine sampling networks (e.g., U.S. Environmental Protection Agency (EPA)'s Chemical Speciation Network). In some cases, the OC artifact has been corrected using a regression method (RM) for artifact estimation. In this method, the gamma-intercept of the regression of the OC concentration on the fine particle (PM2.5) mass concentration is taken to be an estimate of the average OC sampling artifact (net of positive and negative artifacts). This paper discusses options for artifact correction in large routine sampling networks. Specifically, the goals are to (1) articulate the assumptions and limitations inherent to the RM, (2) describe other artifact correction approaches, and (3) suggest a cost-effective method for artifact correction in large monitoring networks. The RM assumes a linear relationship between measured OC and PM mass: a constant slope (OC mass fraction) and a constant intercept (RM artifact estimate). These assumptions are not always valid. Additionally, outliers and other individual data points can have a large influence on the RM artifact estimates. The RM yields results within the range of measurement-based methods for some datasets and not for others. Given that the adsorption of organic gases increases with atmospheric concentrations of organics, subtraction of an average artifact from all samples (e.g., across multiple sites) will underestimate OC for lower-concentration samples (e.g., clean sites) and overestimate OC for higher-concentration samples (e.g., polluted sites). For relatively accurate, simple, and cost-effective artifact OC estimation in large networks, the authors suggest backup filter sampling on at least 10% of sampling days at all sites with artifact correction on a sample-by-sample basis as described herein.

Download full-text PDF

Source
http://dx.doi.org/10.3155/1047-3289.61.6.696DOI Listing

Publication Analysis

Top Keywords

artifact correction
16
artifact
12
organic carbon
8
monitoring networks
8
regression method
8
measurement-based methods
8
large routine
8
routine sampling
8
sampling networks
8
method artifact
8

Similar Publications