Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Purpose: Resistance to glucocorticoid (GC) is a significant problem in the clinical management of lymphoid malignancies. Addressing this issue via a mechanistic understanding of relevant signaling pathways is more likely to yield positive outcomes.
Experimental Design: We used gene set enrichment analysis (GSEA), multiple genetic models of gain and loss of function in B-cell lymphoma cell lines, in vitro and in vivo, and primary patient samples to characterize a novel relationship between the cyclic AMP/phosphodiesterase 4B (cAMP/PDE4B), AKT/mTOR activities, and GC responses.
Results: Starting from the GSEA, we found that overexpression of the PDE4B in diffuse large B-cell lymphoma (DLBCL) impinge on the same genes/pathways that are abnormally active in GC-resistant tumors. We used genetically modified cell lines to show that PDE4B modulates cAMP inhibitory activities toward the AKT/mTOR pathway and defines GC resistance in DLBCL. In agreement with these data, pharmacologic inhibition of PDE4 in a xenograft model of human lymphoma unleashed cAMP effects, inhibited AKT, and restored GC sensitivity. Finally, we used primary DLBCL samples to confirm the clinical relevance and biomarker potential of AKT/mTOR regulation by PDE4B.
Conclusions: Together, these data mechanistically elucidated how cAMP modulates GC responses in lymphocytes, defined AKT as the principal transducer of the growth inhibitory effects of cAMP in B cells, and allowed the formulation of genomics-guided clinical trials that test the ability of PDE4 inhibitors to restore GC sensitivity and improve the outcome of patients with B-cell malignancies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4651210 | PMC |
http://dx.doi.org/10.1158/1078-0432.CCR-11-0770 | DOI Listing |