Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Preclinical investigations and early clinical trial studies suggest that FLT3 inhibitors offer a viable therapy for acute myeloid leukemia. However, early clinical data for direct FLT3 inhibitors provided only modest results because of the failure to fully inhibit FLT3. We have designed and synthesized a novel class of 3-phenyl-1H-5-pyrazolylamine-derived compounds as FLT3 inhibitors which exhibit potent FLT3 inhibition and high selectivity toward different receptor tyrosine kinases. The structure-activity relationships led to the discovery of two series of FLT3 inhibitors, and some potent compounds within these two series exhibited comparable potency to FLT3 inhibitors sorafenib (3) and ABT-869 (4) in both wt-FLT3 enzyme inhibition and FLT3-ITD inhibition on cell growth (MOLM-13 and MV4;11 cells). In particular, the selected compound 12a exhibited the ability to regress tumors in mouse xenograft models using MOLM-13 and MV4;11 cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2011.06.016 | DOI Listing |