98%
921
2 minutes
20
We use first-principles computational methods to examine hole trapping in organic molecular crystals. We present a computational scheme based on the tuning of the fraction of exact exchange in hybrid density functional theory to eliminate the many-electron self-interaction error. With small organic molecules, we show that this scheme gives accurate descriptions of ionization and dimer dissociation. We demonstrate that the excess hole in perfect molecular crystals forms self-trapped molecular polarons. The predicted absolute ionization potentials of both localized and delocalized holes are consistent with experimental values.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.106.226403 | DOI Listing |
RSC Med Chem
August 2025
School of Cellular and Molecular Medicine, University of Bristol Bristol BS8 1TD UK
Carbapenemases, β-lactamases hydrolysing carbapenem antibiotics, challenge the treatment of multi-drug resistant bacteria. The OXA-48 carbapenemase is widely disseminated in , necessitating new treatments for producer strains. Diazabicyclooctane (DBO) inhibitors, including avibactam and nacubactam, act on a wide range of enzymes to overcome β-lactamase-mediated resistance.
View Article and Find Full Text PDFRSC Adv
September 2025
Department of Chemistry, Central University of Karnataka Kalaburagi-585 367 Karnataka India.
This research work details the use of a molecular hybridization technique to create a library of four series of hydrazineyl-linked imidazo[1,2-]pyrimidine-thiazole derivatives. The structure of one of the final products, K2, was validated using single-crystal X-ray diffraction. Twenty-six novel hybrid molecules (K1-K26) were synthesized and tested for activity against the H37Rv strain.
View Article and Find Full Text PDFRSC Chem Biol
July 2025
Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University Max-von-Laue-Str. 9 D-60438 Frankfurt am Main Germany
Herein we present the rapid development of LH168, a potent and highly selective chemical probe for WDR5, streamlined by utilizing a DEL-ML (DNA encoded library-machine learning) hit as the chemical starting point. LH168 was comprehensively characterized in bioassays and demonstrated potent target engagement at the WIN-site pocket of WDR5, with an EC of approximately 10 nM, a long residence time, and exceptional proteome-wide selectivity for WDR5. In addition, we present the X-ray co-crystal structure and provide insights into the structure-activity relationships (SAR).
View Article and Find Full Text PDFChem Sci
August 2025
Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 China
Predicting Antibody-Antigen (Ab-Ag) docking and structure-based design represent significant long-term and therapeutically important challenges in computational biology. We present SAGERank, a general, configurable deep learning framework for antibody design using Graph Sample and Aggregate Networks. SAGERank successfully predicted the majority of epitopes in a cancer target dataset.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
Visible-light-responsive Rh/Sb co-doped SrTiO with engineered {100}/{110} facets (STO:RS(NaCl)) was synthesized flux-assisted crystallization. Facet-dependent spatial charge separation, driven by work function differences, enabled electrons and holes to migrate to the respective facets. This configuration tripled photocatalytic hydrogen evolution non-faceted STO:RS(w/o), overcoming the limitations of ultraviolet-only absorption and inefficient charge separation.
View Article and Find Full Text PDF