Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Technological developments are driving in vitro methods towards integrated "omic" strategies. However, there is still an over reliance on classical viability assays for dose range finding. Such assays are not readily suited to the investigation of subtle alterations in cell function and most require termination of the experiment, which makes it difficult to monitor temporal alterations in repeat-dose long term exposure experiments. To this end, we investigated the use of lactate production as a marker of cell stress in long term repeat dose experiments. We conducted daily exposures to eight compounds at five concentrations for 14 days on human renal proximal tubular cells (RPTEC/TERT1), human hepatoma cells (HepaRG) and mouse fibroblasts (BALB-3T3) cells. Compounds were chosen from a training set used in the 7th EU Framework project Predict-IV and consisted of amiodarone, diclofenac, troglitazone, cadmium chloride, cephaloridine, cidofovir, cyclosporine A and buflomedil. At days 1, 3, 7 and 14, lactate was measured in the supernatant medium. At day 14, cells were assayed for resazurin reduction capability and subsequently lysed in methanol for ATP determination. Compound-induced loss of viability was comparable across all cell lines. For all cell types, when cell viability was compromised at day 14, lactate production was induced during the treatment period. In some situations, lactate also fell below control values, indicating cell death. Thus, temporal alterations in supernatant lactate provides information on the time and concentration of stress induction and the time and concentration where cell death becomes the dominant factor. Supernatant lactate production is a simple, cheap and non-invasive parameter. Since many molecular pathways converge on the glycolytic pathway, enhanced lactate production may be considered as a global marker of sub-lethal injury and thus an ideal marker for investigating temporal alterations in long term repeat dose testing in vitro regimes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tiv.2011.05.018 | DOI Listing |