A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Partially observed bipartite network analysis to identify predictive connections in transcriptional regulatory networks. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Messenger RNA expression is regulated by a complex interplay of different regulatory proteins. Unfortunately, directly measuring the individual activity of these regulatory proteins is difficult, leaving us with only the resulting gene expression pattern as a marker for the underlying regulatory network or regulator-gene associations. Furthermore, traditional methods to predict these regulator-gene associations do not define the relative importance of each association, leading to a large number of connections in the global regulatory network that, although true, are not useful.

Results: Here we present a Bayesian method that identifies which known transcriptional relationships in a regulatory network are consistent with a given body of static gene expression data by eliminating the non-relevant ones. The Partially Observed Bipartite Network (POBN) approach developed here is tested using E. coli expression data and a transcriptional regulatory network derived from RegulonDB. When the regulatory network for E. coli was integrated with 266 E. coli gene chip observations, POBN identified 93 out of 570 connections that were either inconsistent or not adequately supported by the expression data.

Conclusion: POBN provides a systematic way to integrate known transcriptional networks with observed gene expression data to better identify which transcriptional pathways are likely responsible for the observed gene expression pattern.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3117734PMC
http://dx.doi.org/10.1186/1752-0509-5-86DOI Listing

Publication Analysis

Top Keywords

regulatory network
20
gene expression
16
expression data
12
partially observed
8
observed bipartite
8
bipartite network
8
regulatory
8
transcriptional regulatory
8
regulatory proteins
8
expression pattern
8

Similar Publications