98%
921
2 minutes
20
Tularemia is a potentially fatal disease that is caused by the highly infectious and zoonotic pathogen Francisella tularensis. Despite the monomorphic nature of sequenced F. tularensis genomes, there is a significant degree of plasticity in the organization of genetic elements. The observed variability in these genomes is due primarily to the transposition of direct repeats and insertion sequence (IS) elements. Since current methods used to genotype F. tularensis are time-consuming and require extensive laboratory resources, IS elements were investigated as a means to subtype this organism. The unique spatial location of specific IS elements provided the basis for the development of a differential IS amplification (DISA) assay to detect and distinguish the more virulent F. tularensis subsp. tularensis (subtypes A.I and A.II) and subsp. holarctica (type B) strains from F. tularensis subsp. novicida and other near neighbors, including Francisella philomiragia and Francisella-like endosymbionts found in ticks. Amplicon sizes and sequences derived from DISA showed heterogeneity within members of the subtype A.I and A.II isolates but not the type B strains. These differences were due to a 312-bp fragment derived from the IS element ISFtu1. Analysis of wild-type F. tularensis isolates by DISA correlated with pulsed-field gel electrophoresis genotyping utilizing two different restriction endonucleases and provided rapid results with minimal sample processing. The applicability of this molecular typing assay for environmental studies was demonstrated by the accurate identification and differentiation of tick-borne F. tularensis. The described approach to IS targeting and amplification provides new capability for epidemiological investigations and characterizations of tularemia source outbreaks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3147756 | PMC |
http://dx.doi.org/10.1128/JCM.00033-11 | DOI Listing |
J Bacteriol
September 2025
Department of Life Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA.
Unlabelled: is an important human pathogen responsible for causing tularemia in the Northern Hemisphere. has been developed as a biological weapon in the past due to its extremely high virulence. is a gram-negative, intracellular pathogen that primarily infects macrophages.
View Article and Find Full Text PDFSci Adv
August 2025
Department of Molecular Pathology and Biology, Military Faculty of Medicine, University of Defence, 500 01 Hradec Kralove, Czechia.
Dendritic cells (DCs) hijacked by intracellular bacteria contribute to pathogen dissemination and immunopathology. How bacteria achieve DC subversion remains largely unknown. Here, we describe the mechanism used by tularemia agent exploiting host mitochondrial anaplerosis.
View Article and Find Full Text PDFBMC Genomics
August 2025
Institute of Bacterial Infections and Zoonoses, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Naumburger Str. 96a, 07743, Jena, Germany.
Background: Bacterial genome exploration and outbreak analysis rely heavily on robust whole-genome sequencing and bioinformatics analysis. Widely-used genomic methods, such as genotyping and detection of genetic markers demand high sequencing accuracy and precise genome assembly for reliable results.
Methods: To assess the utility of nanopore sequencing for genotyping highly pathogenic bacteria with low mutation rates, we sequenced six reference strains using Oxford Nanopore Technologies (ONT) R10.
Anal Chim Acta
October 2025
Fitzpatrick Institute for Photonics, Duke University, Durham, NC, 27708, USA; Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA; Department of Chemistry, Duke University, Durham, NC, 27708, USA. Electronic address:
The lateral flow immunoassay (LFIA) has become a widely accepted point-of-care diagnostic tool (POCT) due to its simplicity, portability, cost-effectiveness, and rapid biomarker detection capabilities. However, its sensitivity in detecting target analytes has been limited by the visual signals produced by traditional gold nanoparticles. In this study, we introduce a highly sensitive near infrared (NIR) photothermal platform using gold nanostars (GNS) with a tunable plasmon resonance band spanning wavelengths from 700 to 850 nm.
View Article and Find Full Text PDFLakartidningen
August 2025
med dr, bitr överläkare/infektionsläkare, ME infektionssjukdomar, Karolinska universitetssjukhuset, Stockholm.
Tularemia is a zoonotic disease caused by the contagious bacterium Francisella tularensis. In Sweden, the infection is primarily transmitted through mosquito bites with peak season from August to October. Depending on the infection site, tularemia has six different clinical variants.
View Article and Find Full Text PDF