A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Mapping clinical phenotype data elements to standardized metadata repositories and controlled terminologies: the eMERGE Network experience. | LitMetric

Mapping clinical phenotype data elements to standardized metadata repositories and controlled terminologies: the eMERGE Network experience.

J Am Med Inform Assoc

Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA.

Published: November 2011


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Systematic study of clinical phenotypes is important for a better understanding of the genetic basis of human diseases and more effective gene-based disease management. A key aspect in facilitating such studies requires standardized representation of the phenotype data using common data elements (CDEs) and controlled biomedical vocabularies. In this study, the authors analyzed how a limited subset of phenotypic data is amenable to common definition and standardized collection, as well as how their adoption in large-scale epidemiological and genome-wide studies can significantly facilitate cross-study analysis.

Methods: The authors mapped phenotype data dictionaries from five different eMERGE (Electronic Medical Records and Genomics) Network sites studying multiple diseases such as peripheral arterial disease and type 2 diabetes. For mapping, standardized terminological and metadata repository resources, such as the caDSR (Cancer Data Standards Registry and Repository) and SNOMED CT (Systematized Nomenclature of Medicine), were used. The mapping process comprised both lexical (via searching for relevant pre-coordinated concepts and data elements) and semantic (via post-coordination) techniques. Where feasible, new data elements were curated to enhance the coverage during mapping. A web-based application was also developed to uniformly represent and query the mapped data elements from different eMERGE studies.

Results: Approximately 60% of the target data elements (95 out of 157) could be mapped using simple lexical analysis techniques on pre-coordinated terms and concepts before any additional curation of terminology and metadata resources was initiated by eMERGE investigators. After curation of 54 new caDSR CDEs and nine new NCI thesaurus concepts and using post-coordination, the authors were able to map the remaining 40% of data elements to caDSR and SNOMED CT. A web-based tool was also implemented to assist in semi-automatic mapping of data elements.

Conclusion: This study emphasizes the requirement for standardized representation of clinical research data using existing metadata and terminology resources and provides simple techniques and software for data element mapping using experiences from the eMERGE Network.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128396PMC
http://dx.doi.org/10.1136/amiajnl-2010-000061DOI Listing

Publication Analysis

Top Keywords

data elements
28
data
14
phenotype data
12
emerge network
8
standardized representation
8
elements
7
mapping
6
standardized
5
emerge
5
mapping clinical
4

Similar Publications