Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We use a detailed modeling formalism based on numerical simulations of local calcium release events where the blurring of the image, the presence of diffusional barriers provided by large organelles situated close to the release site, as well as the variable position of the scan line with respect to the release site are taken into consideration. We have investigated the effect of the fluorescence noise fluctuations on the accuracy in computing the signal mass from linescan recordings and obtained a quantitative description of both the signal mass and the local increase in the free Ca(2+) level as a function of the release current, the release duration and the orientation of the scan line, for three different levels of noise magnitudes. The model could provide a very good fit to a wide set of available experimental data regarding the signal mass of puffs visualized by fluorescence microscopy in the Xenopus oocyte loaded with 40 μM Oregon Green-1 in the absence of the calcium chelator EGTA. Numerical simulations also predict the amplitude and the kinetics of calcium signals evolving in the absence of the indicator, and indicate that sub-maximal activation of IP(3) receptors could produce in average levels of about 2 μM and 0.4 μM free Ca(2+) close to a release site located in the animal or in the vegetal hemisphere, respectively, whereas the maximal levels reached in more rare events could be 11 μM and 4 μM, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-011-1104-6DOI Listing

Publication Analysis

Top Keywords

signal mass
16
release site
12
local calcium
8
numerical simulations
8
close release
8
free ca2+
8
μm μm
8
release
6
μm
5
signal
4

Similar Publications

In vivo itaconate tracing reveals degradation pathway and turnover kinetics.

Nat Metab

September 2025

Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.

Itaconate is an immunomodulatory metabolite that alters mitochondrial metabolism and immune cell function. This organic acid is endogenously synthesized by tricarboxylic acid (TCA) metabolism downstream of TLR signalling. Itaconate-based treatment strategies are under investigation to mitigate numerous inflammatory conditions.

View Article and Find Full Text PDF

Molecular subtypes of human skeletal muscle in cancer cachexia.

Nature

September 2025

Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.

Cancer-associated muscle wasting is associated with poor clinical outcomes, but its underlying biology is largely uncharted in humans. Unbiased analysis of the RNAome (coding and non-coding RNAs) with unsupervised clustering using integrative non-negative matrix factorization provides a means of identifying distinct molecular subtypes and was applied here to muscle of patients with colorectal or pancreatic cancer. Rectus abdominis biopsies from 84 patients were profiled using high-throughput next-generation sequencing.

View Article and Find Full Text PDF

Background: While highly efficacious for numerous cancers, immune checkpoint inhibitors (ICIs) can cause unpredictable and potentially severe immune-related adverse events (irAEs), underscoring the need to understand irAE biology.

Methods: We used a multidimensional approach incorporating single-cell RNA sequencing, mass cytometry, multiplex cytokine assay, and antinuclear antibody (ANA) profiling to characterize the peripheral immune landscape of patients receiving ICI therapy according to irAE development.

Results: Analysis of 162 patients revealed that individuals who developed clinically significant irAEs exhibited a baseline proinflammatory, autoimmune-like state characterized by a significantly higher abundance of CD57 T and natural killer (NK) T cells, plasmablasts, proliferating and activated CXCR3 lymphocytes, CD8 effector and terminal effector memory T cells, along with reduced NK cells and elevated plasma ANA levels.

View Article and Find Full Text PDF

Bone morphogenetic proteins (BMPs) are effective for treating various orthopedic conditions and are widely used clinically. However, their therapeutic efficacy is limited in osteoporosis patients. Iron overload represents a key risk factor for osteoporosis, inducing ferroptosis and suppressing the osteogenic differentiation of bone marrow stromal cells (BMSCs).

View Article and Find Full Text PDF

Designing Patient-Centered Communication Aids in Pediatric Surgery Using Large Language Models.

J Pediatr Surg

September 2025

Harvard Medical School, Boston, MA, United States; Medically Engineered Solutions in Healthcare Incubator, Innovation in Operations Research Center, Mass General Brigham, Boston, MA, United States. Electronic address:

Introduction: Large language models (LLMs) have been shown to translate information from highly specific domains into lay-digestible terms. Pediatric surgery remains an area in which it is difficult to communicate clinical information in an age-appropriate manner, given the vast diversity in language comprehension levels across patient populations and the complexity of procedures performed. This study evaluates LLMs as tools for generating explanations of common pediatric surgeries to increase efficiency and quality of communication.

View Article and Find Full Text PDF