98%
921
2 minutes
20
State transitions and photosystem stoichiometry adjustment are two oxidation-reduction (redox)-regulated acclimatory responses in photosynthesis. State transitions are short-term adaptations that, in chloroplasts, involve reversible post-translational modification by phosphorylation of light-harvesting complex II (LHC II). Photosystem stoichiometry adjustments are long-term responses involving transcriptional regulation of reaction centre genes. Both responses are initiated by changes in light quality and are regulated by the redox state of plastoquinone (PQ). The LHC II kinase involved in the state 2 transition is a serine/threonine kinase known as STT7 in Chlamydomonas, and as STN7 in Arabidopsis. The phospho-LHC II phosphatase that produces the state 1 transition is a PP2C-type protein phosphatase currently termed both TAP38 and PPH1. In plants and algae, photosystem stoichiometry adjustment is governed by a modified two-component sensor kinase of cyanobacterial origin - chloroplast sensor kinase (CSK). CSK is a sensor of the PQ redox state. Chloroplast sigma factor 1 (SIG1) and plastid transcription kinase (PTK) are the functional partners of CSK in chloroplast gene regulation. We suggest a signalling pathway for photosystem stoichiometry adjustment. The signalling pathways of state transitions and photosystem stoichiometry adjustments are proposed to be distinct, with the two pathways sensing PQ redox state independently of each other.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-3040.2011.02349.x | DOI Listing |
Plant Physiol
May 2025
Department of Chemistry, Graduate School of Sciences, Tohoku University, Sendai 980-8578, Japan.
The photosynthetic reaction is driven by the 2 light-excited pigment-protein supercomplexes: photosystem II (PSII) and photosystem I (PSI). Due to the low excitation probability of chlorophylls (Chls), the efficient excitation of the 2 PSs relies on the exquisite organization of their light-harvesting antenna under environmental fluctuations. However, since the antenna-protein composition within cells remains elusive, the in vivo events arising from antenna variations cannot be accurately explored.
View Article and Find Full Text PDFFEBS Lett
May 2025
Department of Biology, Saint Louis University, MO, USA.
The phycobilisome (PBS) captures light energy and transfers it to photosystem I (PSI) and photosystem II (PSII). Which and how many copies of protein subunits in PBSs, PSI, and PSII remain unbound in thylakoids are unknown. Here, quantitative mass spectrometry (QMS) was used to quantify substantial pools of free extrinsic subunits of PSII and PSI.
View Article and Find Full Text PDFChem Commun (Camb)
February 2025
Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
1,4-Dihydronicotinamide adenine dinucleotide (NADH) and its phosphate ester (NADPH) are essential cofactors required for all living cells, playing pivotal roles in multiple biological processes such as energy metabolism and biosynthesis. NADPH is produced during photosynthesis by the combination of photosystem II, where water is oxidised, and photosystem I, where NADP is reduced. This review focuses on catalytic NAD(P) (and its analogues) reduction to generate 1,4-NAD(P)H without formation of other regioisomers and the dimer.
View Article and Find Full Text PDFFunct Plant Biol
October 2024
School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
Xero-halophytes are the salt-tolerant plants of dry habitats that adapt efficient strategies to endure extreme salt and water fluctuations. This study elucidated the adaptations related to PSII photochemistry, photoprotection, and photoinhibition in six C4 xero-halophytes (Atriplex stocksii , Haloxylon stocksii , Salsola imbricata, Suaeda fruticosa, Desmostachya bipinnata , and Saccharum griffithii ) grown in their native habitats. Chlorophyll a fluorescence quenching measurements suggested that S.
View Article and Find Full Text PDFBiochim Biophys Acta Bioenerg
November 2024
Institute of Biosciences and Biotechnologies of Aix-Marseille - UMR7265, Saint-Paul-Lez-Durance, France. Electronic address:
Some cyanobacteria can do photosynthesis using not only visible but also far-red light that is unused by most other oxygenic photoautotrophs because of its lower energy content. These species have a modified photosynthetic apparatus containing red-shifted pigments. The incorporation of red-shifted pigments decreases the photochemical efficiency of photosystem I and, especially, photosystem II, and it might affect the distribution of excitation energy between the two photosystems with possible consequences on the activity of the entire electron transport chain.
View Article and Find Full Text PDF