98%
921
2 minutes
20
In networks of plant-animal mutualisms, different animal groups interact preferentially with different plants, thus forming distinct modules responsible for different parts of the service. However, what we currently know about seed dispersal networks is based only on birds. Therefore, we wished to fill this gap by studying bat-fruit networks and testing how they differ from bird-fruit networks. As dietary overlap of Neotropical bats and birds is low, they should form distinct mutualistic modules within local networks. Furthermore, since frugivory evolved only once among Neotropical bats, but several times independently among Neotropical birds, greater dietary overlap is expected among bats, and thus connectance and nestedness should be higher in bat-fruit networks. If bat-fruit networks have higher nestedness and connectance, they should be more robust to extinctions. We analyzed 1 mixed network of both bats and birds and 20 networks that consisted exclusively of either bats (11) or birds (9). As expected, the structure of the mixed network was both modular (M = 0.45) and nested (NODF = 0.31); one module contained only birds and two only bats. In 20 datasets with only one disperser group, bat-fruit networks (NODF = 0.53 ± 0.09, C = 0.30 ± 0.11) were more nested and had a higher connectance than bird-fruit networks (NODF = 0.42 ± 0.07, C = 0.22 ± 0.09). Unexpectedly, robustness to extinction of animal species was higher in bird-fruit networks (R = 0.60 ± 0.13) than in bat-fruit networks (R = 0.54 ± 0.09), and differences were explained mainly by species richness. These findings suggest that a modular structure also occurs in seed dispersal networks, similar to pollination networks. The higher nestedness and connectance observed in bat-fruit networks compared with bird-fruit networks may be explained by the monophyletic evolution of frugivory in Neotropical bats, among which the diets of specialists seem to have evolved from the pool of fruits consumed by generalists.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00442-011-1984-2 | DOI Listing |
Biol Lett
December 2021
Red de Ecoetología, Instituto de Ecología A.C., Xalapa, CP 91073, Veracruz, Mexico.
PLoS One
April 2016
Red de Ecología Funcional, Instituto de Ecología A.C. Apdo, Postal 63, CP 91000, Xalapa, Veracruz, México.
Forest disturbance causes specialization of plant-frugivore networks and jeopardizes mutualistic interactions through reduction of ecological redundancy. To evaluate how simplification of a forest into an agroecosystem affects plant-disperser mutualistic interactions, we compared bat-fruit interaction indexes of specialization in tropical montane cloud forest fragments (TMCF) and shaded-coffee plantations (SCP). Bat-fruit interactions were surveyed by collection of bat fecal samples.
View Article and Find Full Text PDFOecologia
September 2011
Institut für Experimentelle Ökologie, Universität Ulm, Ulm, Germany.
In networks of plant-animal mutualisms, different animal groups interact preferentially with different plants, thus forming distinct modules responsible for different parts of the service. However, what we currently know about seed dispersal networks is based only on birds. Therefore, we wished to fill this gap by studying bat-fruit networks and testing how they differ from bird-fruit networks.
View Article and Find Full Text PDFPLoS One
February 2011
Institute of Experimental Ecology, University of Ulm, Ulm, Germany.
Mutualistic networks are crucial to the maintenance of ecosystem services. Unfortunately, what we know about seed dispersal networks is based only on bird-fruit interactions. Therefore, we aimed at filling part of this gap by investigating bat-fruit networks.
View Article and Find Full Text PDF