Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Metallic oxides have been successfully investigated for the recycling of polylactide (PLA) via catalyzed unzipping depolymerization allowing for the selective recovery of lactide monomer. In this contribution, a metallic oxide nanofiller, that is, ZnO, has been dispersed into PLA without detrimental polyester degradation yielding PLA/ZnO nanocomposites directly suitable for producing films and fibers. The nanocomposites were produced by melt-blending two different grades of PLA with untreated ZnO and surface-treated ZnO nanoparticles. The surface treatment by silanization proved to be necessary for avoiding the decrease in molecular weight and thermal and mechanical properties of the filled polyester matrix. Silane-treated ZnO nanoparticles yielded nanocomposites characterized by good mechanical performances (tensile strength in the interval from 55 to 65 MPa), improved thermal stability, and fine nanofiller dispersion, as evidenced by microscopy investigations. PLA/ZnO nanocomposites were further extruded in films and fibers, respectively, characterized by anti-UV and antibacterial properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm2001445 | DOI Listing |