98%
921
2 minutes
20
The synthesis and properties of the bridged piperidine (oxaazabicyclo) compounds 8, 9, and 11 are described. A conformational analysis of these structures is compared with the representative GPR119 ligand 1. These results and the differences in agonist pharmacology are used to formulate a conformation-based hypothesis to understand activation of the GPR119 receptor. We also show for these structures that the agonist pharmacology in rat masks the important differences in human pharmacology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm200003p | DOI Listing |
Biomolecules
October 2020
Department of Medical Oncology and Experimental Therapeutics, City of Hope, National Medical Center, Duarte, CA 91010, USA.
The past quarter-century may justly be referred to as a period analogous to the "Cambrian explosion" in the history of proteins. This period is marked by the appearance of the intrinsically disordered proteins (IDPs) on the scene since their discovery in the mid-1990s. Here, I first reflect on how we accidentally stumbled on these fascinating molecules.
View Article and Find Full Text PDFBioorg Med Chem Lett
August 2020
Asubio Pharma Co., Ltd., 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
Inducing oligodendrocyte progenitor cell (OPC) differentiation is a novel therapeutic strategy for the treatment of demyelinating diseases such as multiple sclerosis (MS). In the preceding article, we detailed the discovery of compound 1, a potent inducer of OPC differentiation possessing a characteristic spiroindoline structure. Also, we found that N-methylation and des-carbonyl compound 1 (4) led to a loss in potency.
View Article and Find Full Text PDFFront Oncol
December 2019
Department of Pathology, AIMST University, Bedong, Malaysia.
Hepatitis B virus (HBV) is causally linked to hepatocellular injury and cell death, which are followed by hepatocellular carcinoma (HCC) after a long latent period. The HBV derived X protein (HBX) is the most potent carcinogenic factor for HCC, however, the molecular mechanism of HBX-induced transformation of hepatic cells in HCC is poorly understood. We have shown that nuclear receptor co-repressor (NCoR) is essential for the spatial repression of global transcription by the promyelocytic leukemia oncogenic domains (PODs), a frequent target of viral oncoproteins like HBX and that disintegration of PODs due to misfolded conformation dependent loss (MCDL) of NCoR is linked to promyelocytic and monocytic acute myeloid leukemia (AML).
View Article and Find Full Text PDFPLoS Pathog
July 2015
Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, United States of America; Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America; Key Laboratory of Brain Functional Genomics (East China Normal Uni
The prion hypothesis postulates that the infectious agent in transmissible spongiform encephalopathies (TSEs) is an unorthodox protein conformation based agent. Recent successes in generating mammalian prions in vitro with bacterially expressed recombinant prion protein provide strong support for the hypothesis. However, whether the pathogenic properties of synthetically generated prion (rec-Prion) recapitulate those of naturally occurring prions remains unresolved.
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
June 2013
Department of Molecular and Cellular Biochemistry, Ohio State University, 1645 Neil Ave., Columbus, OH 43210, USA.
The infectious agent of the transmissible spongiform encephalopathies, or prion diseases, has been the center of intense debate for decades. Years of studies have provided overwhelming evidence to support the prion hypothesis that posits a protein conformal infectious agent is responsible for the transmissibility of the disease. The recent studies that generate prion infectivity with purified bacterially expressed recombinant prion protein not only provides convincing evidence supporting the core of the prion hypothesis, that a pathogenic conformer of host prion protein is able to seed the conversion of its normal counterpart to the likeness of itself resulting in the replication of the pathogenic conformer and occurrence of disease, they also indicate the importance of cofactors, particularly lipid or lipid-like molecules, in forming the protein conformation-based infectious agent.
View Article and Find Full Text PDF