A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Microwell device for targeting single cells to electrochemical microelectrodes for high-throughput amperometric detection of quantal exocytosis. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Electrochemical microelectrodes are commonly used to detect spikes of amperometric current that correspond to exocytosis of oxidizable transmitter from individual vesicles, i.e., quantal exocytosis. We are developing transparent multielectrochemical electrode arrays on microchips in order to automate measurement of quantal exocytosis. Here, we report development of an improved device to target individual cells to each microelectrode in an array. Efficient targeting (~75%) is achieved using cell-sized microwell traps fabricated in SU-8 photoresist together with patterning of poly(l-lysine) in register with electrodes to promote cell adhesion. The surface between electrodes is made resistant to cell adhesion using poly(ethylene glycol) in order to facilitate movement of cells to electrode "docking sites". We demonstrate the activity of the electrodes using the test analyte ferricyanide and perform recordings of quantal exocytosis from bovine adrenal chromaffin cells on the device. Multiple cell recordings on a single device demonstrate the consistency of spike measurements, and multiple recordings from the same electrodes demonstrate that the device can be cleaned and reused without degradation of performance. The new device will enable high-throughput studies of quantal exocytosis and may also find application in rapidly screening drugs or toxins for effects on exocytosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3069130PMC
http://dx.doi.org/10.1021/ac1033616DOI Listing

Publication Analysis

Top Keywords

quantal exocytosis
20
electrochemical microelectrodes
8
cell adhesion
8
exocytosis
7
quantal
5
device
5
microwell device
4
device targeting
4
targeting single
4
cells
4

Similar Publications