Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Intrinsic water use efficiency (WUE(intr)), the ratio of photosynthesis to stomatal conductance to water, is often used as an index for crop water use in breeding projects. However, WUE(intr) conflates variation in these two processes, and thus may be less useful as a selection trait than knowledge of both components. The goal of the present study was to determine whether the contribution of photosynthetic capacity and stomatal conductance to WUE(intr) varied independently between soybean genotypes and whether this pattern was interactive with mild drought. Photosynthetic capacity was defined as the variation in WUE(intr) that would occur if genotypes of interest had the same stomatal conductance as a reference genotype and only differed in photosynthesis; similarly, the contribution of stomatal conductance to WUE(intr) was calculated assuming a constant photosynthetic capacity across genotypes. Genotypic differences in stomatal conductance had the greatest effect on WUE(intr) (26% variation when well watered), and was uncorrelated with the effect of photosynthetic capacity on WUE(intr). Thus, photosynthetic advantages of 8.3% were maintained under drought. The maximal rate of Rubisco carboxylation, generally the limiting photosynthetic process for soybeans, was correlated with photosynthetic capacity. As this trait was not interactive with leaf temperature, and photosynthetic capacity differences were maintained under mild drought, the observed patterns of photosynthetic advantage for particular genotypes are likely to be consistent across a range of environmental conditions. This suggests that it is possible to employ a selection strategy of breeding water-saving soybeans with high photosynthetic capacities to compensate for otherwise reduced photosynthesis in genotypes with lower stomatal conductance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jxb/erq461 | DOI Listing |