Mitochondrial peptidase IMMP2L mutation causes early onset of age-associated disorders and impairs adult stem cell self-renewal.

Aging Cell

Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA.

Published: August 2011


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mitochondrial reactive oxygen species (ROS) are proposed to play a central role in aging and age-associated disorders, although direct in vivo evidence is lacking. We recently generated a mouse mutant with mutated inner mitochondrial membrane peptidase 2-like (Immp2l) gene, which impairs the signal peptide sequence processing of mitochondrial proteins cytochrome c1 and glycerol phosphate dehydrogenase 2. The mitochondria from mutant mice generate elevated levels of superoxide ion and cause impaired fertility in both sexes. Here, we design experiments to examine the effects of excessive mitochondrial ROS generation on health span. We show that Immp2l mutation increases oxidative stress in multiple organs such as the brain and the kidney, although expression of superoxide dismutases in these tissues of the mutants is also increased. The mutants show multiple aging-associated phenotypes, including wasting, sarcopenia, loss of subcutaneous fat, kyphosis, and ataxia, with female mutants showing earlier onset and more severe age-associated disorders than male mutants. The loss of body weight and fat was unrelated to food intake. Adipose-derived stromal cells (ADSC) from mutant mice showed impaired proliferation capability, formed significantly less and smaller colonies in colony formation assays, although they retained adipogenic differentiation capability in vitro. This functional impairment was accompanied by increased levels of oxidative stress. Our data showed that mitochondrial ROS is the driving force of accelerated aging and suggested that ROS damage to adult stem cells could be one of the mechanisms for age-associated disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3111879PMC
http://dx.doi.org/10.1111/j.1474-9726.2011.00686.xDOI Listing

Publication Analysis

Top Keywords

age-associated disorders
16
immp2l mutation
8
adult stem
8
mutant mice
8
mitochondrial ros
8
oxidative stress
8
mitochondrial
6
mitochondrial peptidase
4
peptidase immp2l
4
mutation early
4

Similar Publications

Cerebral autoregulation in orthostatic hypotension and falls among older adults: a community-based exploratory study.

Clin Auton Res

September 2025

Faculty of Medicine, Department of Medicine, Ageing and Age-Associated Disorders Research Group, Division of Geriatric Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.

Background: Orthostatic hypotension (OH) is prevalent in older adults and is often associated with falls. However, the presence or absence of symptoms in OH may be mediated by cerebral autoregulation, which helps maintain cerebral perfusion during blood pressure fluctuations.

Methods: We recruited 40 older adults (aged ≥ 55 years) from the Malaysian Elders Longitudinal Research (MELoR) cohort.

View Article and Find Full Text PDF

Epigenetic regulation of bladder cancer in the context of aging.

Front Pharmacol

August 2025

Stem Cell Research Center, Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, China.

Bladder cancer (BC) is a disease that predominantly affects older adults, with aging playing a critical role in its onset and progression. Age-associated phenomena, including immunosenescence and chronic inflammation, form a pro-tumor milieu, while genomic instability and epigenetic drift further increase cancer risk. The review highlights the dual role of DNA methylation in BC: global hypomethylation can activate transposable elements and oncogenes, whereas focal hypermethylation silences tumor-suppressor genes like CDKN2A, especially detrimental in older tissues that rely on these genes for senescence control.

View Article and Find Full Text PDF

CD19CD11cT-bet B cells in myasthenia gravis: a potential biomarker.

Front Neurol

August 2025

Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China.

Background: Myasthenia gravis (MG), an autoimmune disorder characterized by B cell-driven autoantibody production, exhibits heterogeneous B cell subsets dysregulation and incompletely defined signaling mechanisms.

Methods: A cohort of 20 naïve MG patients positive for anti-acetylcholine receptor (AChR) antibodies and 15 healthy controls was analyzed. Peripheral blood mononuclear cells underwent proteomic profiling, flow cytometry (age-associated B cells (ABCs), plasma cells, T follicular helper cells, and regulatory B cells), and western blot validation of nuclear factor kappa-B (NF-κB)/cellular reticuloendotheliosis oncogene homolog (c-Rel) expression.

View Article and Find Full Text PDF

Bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) are two viruses belonging to the genus that are transmitted via insect vector, the biting midge, causing disease in domestic and wild ruminants. These infections can lead to significant morbidity, mortality, and production losses in livestock, with economic consequences for cattle and sheep industries. Despite their growing impact due to environmental and anthropogenic changes, little is known of the prevalence of these viruses in North American bison ().

View Article and Find Full Text PDF

Mitochondria are the regulators of energy production and play a vital role in modulating ageing and age-associated diseases. We investigated the role of sirtuins, a well-studied class of longevity-associated proteins (NAD+-dependent histone deacetylases), in mitochondrial biology and Parkinson's disease pathology. In particular, we endeavored to study the functional implications of mitochondrial sirtuin, sir-2.

View Article and Find Full Text PDF