Nitric oxide signaling modulates synaptic transmission during early postnatal development.

Cereb Cortex

Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary.

Published: September 2011


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Early γ-aminobutyric acid mediated (GABAergic) synaptic transmission and correlated neuronal activity are fundamental to network formation; however, their regulation during early postnatal development is poorly understood. Nitric oxide (NO) is an important retrograde messenger at glutamatergic synapses, and it was recently shown to play an important role also at GABAergic synapses in the adult brain. The subcellular localization and network effect of this signaling pathway during early development are so far unexplored, but its disruption at this early age is known to lead to profound morphological and functional alterations. Here, we provide functional evidence--using whole-cell recording--that NO signaling modulates not only glutamatergic but also GABAergic synaptic transmission in the mouse hippocampus during the early postnatal period. We identified the precise subcellular localization of key elements of the underlying molecular cascade using immunohistochemistry at the light--and electron microscopic levels. As predicted by these morpho-functional data, multineuron calcium imaging in acute slices revealed that this NO-signaling machinery is involved also in the control of synchronous network activity patterns. We suggest that the retrograde NO-signaling system is ideally suited to fulfill a general presynaptic regulatory role and may effectively fine-tune network activity during early postnatal development, while GABAergic transmission is still depolarizing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3155603PMC
http://dx.doi.org/10.1093/cercor/bhq281DOI Listing

Publication Analysis

Top Keywords

early postnatal
16
synaptic transmission
12
postnatal development
12
nitric oxide
8
signaling modulates
8
gabaergic synaptic
8
subcellular localization
8
network activity
8
early
7
oxide signaling
4

Similar Publications

regulates early postnatal DPP4 preadipocyte pool expansion.

Genes Dev

September 2025

RU Adipocytes and Metabolism, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany;

Adipose tissue is rapidly expanding early in life. Elucidating the queues facilitating this process will advance our understanding of metabolically healthy obesity. Using single-cell RNA sequencing, we identified compositional differences of prewean and adult murine subcutaneous adipose tissue.

View Article and Find Full Text PDF

Postnatal interaction of size and shape in the human endocranium and brain structures.

J Anat

September 2025

Department of Biological Sciences (Anthropology), Graduate School of Science, The University of Tokyo, Tokyo, Japan.

The uniqueness of human brain growth and development has been considered promising for its contribution to understanding the origins of the unique human cognitive abilities. Compared with that of chimpanzees, the human endocranium undergoes several characteristic shape changes immediately after birth, which has been termed "endocranial globularization." However, how the brain structures and surrounding neurocranium interact with each other during early development in the context of brain-neurocranium integration remains to be investigated.

View Article and Find Full Text PDF

Background: Antenatal care (ANC) is a critical component for improving maternal and newborn health. It provides a platform for essential healthcare services, including health promotion, screening and diagnosis, injury and disease prevention, birth preparedness and preparation for the postnatal period. By implementing timely and appropriate evidence-based practices, ANC can reduce maternal and child morbidity and mortality and optimise overall health and well-being.

View Article and Find Full Text PDF

The utility of thymus and spleen ultrasound in the early prediction of neonatal sepsis.

J Neonatal Perinatal Med

September 2025

Muratpaşa District Health Directorate, Antalya, Turkey.

BackgroundThis investigation aimed to determine the utility of postnatal, ultrasonographically-derived dimensions of the thymus and spleen as imaging indicators for the prediction of early-onset neonatal sepsis (EOS).Material and MethodIn this case-control study, 30 term neonates diagnosed with Early-Onset Sepsis (EOS), based on European Medicines Agency (EMA) criteria, were compared to 30 healthy, matched control neonates. All participants underwent ultrasonography to quantify thymic and splenic dimensions.

View Article and Find Full Text PDF

Background: Staphylococcus epidermidis (SE) is a predominant hospital-acquired bacterium leading to late-onset sepsis in preterm infants. Recent findings have suggested that postnatal S. epidermidis infection is associated with short-term neurodevelopmental consequences.

View Article and Find Full Text PDF