Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Changes in the subunit composition of postsynaptic AMPA-type glutamate receptors can be induced at CNS synapses by neural activity and under certain pathological conditions. Fear-induced incorporation of GluR2-containing receptors at cerebellar synapses selectively prolongs the decay time of synaptic currents, whereas a switch from GluR2-lacking to GluR2-containing receptors induced by parallel fiber stimulation reduces the amplitude in addition to lengthening the duration of EPSCs. Although it is often assumed that these two forms of synaptic plasticity will alter action potential (AP) firing in the postsynaptic neuron, this has not been directly tested. Using a dynamic current-clamp approach, we now show that the fear-induced increase in EPSC duration increases the size of EPSPs and thereby markedly enhances the AP firing probability. In contrast, the parallel fiber stimulation-triggered switch in GluR2 expression reduces the EPSP-AP coupling because of the decrease in the synaptic current amplitude. The switch also abolished the paired-pulse facilitation that arose from an activity and spermine-dependent unblock of GluR2-lacking receptors and hence reduced the ability of paired stimuli to evoke two consecutive APs. Therefore, fear-induced incorporation of GluR2 receptors enhances the EPSP-AP coupling, but the parallel fiber stimulation-triggered switch reduces both the EPSP-AP coupling and evoked AP doublets. In contrast to long-term potentiation and depression, which modify the amplitude of synaptic currents, this activity-induced change in AMPA receptor phenotype alters synaptic conductance waveform and postsynaptic short-term plasticity. These changes modulate both the probability and pattern of evoked AP firing via a fundamentally different mechanism from long-term potentiation and long-term depression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6623459PMC
http://dx.doi.org/10.1523/JNEUROSCI.2608-10.2011DOI Listing

Publication Analysis

Top Keywords

parallel fiber
12
epsp-ap coupling
12
ampa receptor
8
probability pattern
8
action potential
8
potential firing
8
receptors induced
8
fear-induced incorporation
8
glur2-containing receptors
8
synaptic currents
8

Similar Publications

Linear magnetic nanoparticle structures as key feature in magnetic particle imaging.

Phys Med Biol

September 2025

Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University Medical Faculty, Pauwelsstraße 20, Aachen, 52074, GERMANY.

Objective: Magnetic particle imaging (MPI) opens huge possibilities in image-guided therapy. Its effectiveness is strongly influenced by the quality of the magnetic nanoparticles (MNP) used as tracers. Besides MNP optimization following different synthesis routes, MNP assembly into linear structures can significantly enhance their performance in MPI.

View Article and Find Full Text PDF

Purpose: To characterize corneal immune cell morphodynamics and nerve features, and define the in vivo immune landscape in older adults with human immunodeficiency virus (HIV) receiving antiretroviral therapy (ART), relative to healthy age-matched adults.

Methods: In this cross-sectional study, 16 HIV-positive individuals receiving ART and 15 age-matched controls underwent ocular surface examinations and functional in vivo confocal microscopy (Fun-IVCM). Time-lapsed videos were created to analyze corneal immune cells (T cells, dendritic cells [DCs], macrophages).

View Article and Find Full Text PDF

Metabolic interplay of SCFA's in the gut and oral microbiome: a link to health and disease.

Front Oral Health

August 2025

Conservative Dentistry and Endodontics, AB Shetty Memorial Institute of Dental Sciences, Nitte (deemed to be) University, Mangalore, India.

Short-chain fatty acids (SCFAs), primarily acetate (C2), propionate (C3), and butyrate (C4), are crucial microbial metabolites formed by the fermentation of dietary fibers by gut microbiota in the colon. These SCFAs, characterized by fewer than six carbon atoms, serve as an essential energy source for colonic epithelial cells and contribute approximately 10% of the body's total energy requirement. They are central to maintaining gut health through multiple mechanisms, including reinforcing intestinal barrier function, exerting anti-inflammatory effects, regulating glucose and lipid metabolism, and influencing host immune responses.

View Article and Find Full Text PDF

Linear focal elastosis (LFE), also known as elastotic striae, is a rare cutaneous condition characterized by abnormal or increased deposition of elastic fibers in the dermis. It typically presents as asymptomatic, atrophic, or hyperpigmented linear bands, most commonly on the back. We report a case of LFE in a 15-year-old healthy male who presented with multiple asymptomatic, parallel hypopigmented linear bands with hyperpigmented borders on his back.

View Article and Find Full Text PDF

Actin cytoskeleton alteration and cell homing/migration are crucial determinants for the success of stem cell (SC) based therapy. Photobiomodulation (PBM) is a promising non-pharmacological approach for modulating SC potency. Though ~660 nm is the most studied wavelength for the proliferation/differentiation of SCs, the migration and cytoskeleton remodeling aspects have not been investigated in detail.

View Article and Find Full Text PDF