Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Objective: The aim of this study was to assess by atomic force microscopy (AFM) the effect of Er,Cr:YSGG laser application on the surface microtopography of radicular dentin.
Background: Lasers have been used for various purposes in dentistry, where they are clinically effective when used in an appropriate manner. The Er,Cr:YSGG laser can be used for caries prevention when settings are below the ablation threshold.
Materials And Methods: Four specimens of bovine dentin were irradiated using an Er,Cr:YSGG laser (λ = 2.78 μm), at a repetition rate of 20 Hz, with a 750-μm-diameter sapphire tip and energy density of 2.8 J/cm(2) (12.5 mJ/pulse). After irradiation, surface topography was analyzed by AFM using a Si probe in tapping mode. Quantitative and qualitative information concerning the arithmetic average roughness (Ra) and power spectral density analyses were obtained from central, intermediate, and peripheral areas of laser pulses and compared with data from nonirradiated samples.
Results: Dentin Ra for different areas were as follows: central, 261.26 (±21.65) nm; intermediate, 83.48 (±6.34) nm; peripheral, 45.8 (±13.47) nm; and nonirradiated, 35.18 (±2.9) nm. The central region of laser pulses presented higher ablation of intertubular dentin, with about 340-760 nm height, while intermediate, peripheral, and nonirradiated regions presented no difference in height of peritubular and interperitubular dentin.
Conclusion: According to these results, we can assume that even when used at a low-energy density parameter, Er,Cr:YSGG laser can significantly alter the microtopography of radicular dentin, which is an important characteristic to be considered when laser is used for clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/pho.2010.2812 | DOI Listing |