Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Duchenne muscular dystrophy (DMD) is caused by mutations that disrupt the reading frame of the human DMD gene. Selective removal of exons flanking an out-of-frame DMD mutation can result in an in-frame mRNA transcript that may be translated into an internally deleted, Becker muscular dystrophy (BMD)-like, but functionally active dystrophin protein with therapeutic activity. Antisense oligonucleotides (AOs) can be designed to bind to complementary sequences in the targeted mRNA and modify pre-mRNA splicing to correct the reading frame of a mutated transcript so that gene expression is restored. AO-induced exon skipping producing functional truncated dystrophin exon has been demonstrated in animal models of DMD both in vitro and in vivo, and in DMD patient cells in vitro in culture, and in DMD muscle explants. More recently, AO-mediated exon skipping has been confirmed in DMD patients in Phase I clinical trials. However, it should be noted that personalized molecular medicine may be necessary, since the various reading frame-disrupting mutations are spread across the DMD gene. The different deletions that cause DMD would require skipping of different exons, which would require the optimization and clinical trial workup of many specific AOs. This chapter describes the methodologies available for the optimization of AOs, and in particular phosphorodiamidate morpholino oligomers (PMOs), for the targeted skipping of specific exons on the DMD gene.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-61737-982-6_10DOI Listing

Publication Analysis

Top Keywords

dmd gene
12
dmd
10
phosphorodiamidate morpholino
8
morpholino oligomers
8
oligomers pmos
8
muscular dystrophy
8
reading frame
8
exon skipping
8
bioinformatic functional
4
functional optimization
4

Similar Publications

Fighting for every beat: cardiac therapies in Duchenne muscular dystrophy.

Skelet Muscle

September 2025

Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France.

Duchenne muscular dystrophy (DMD) is a severe, progressive genetic disorder caused by mutations in the DMD gene, resulting in the absence of dystrophin-a key structural protein at the sarcolemma. As the disease progresses, cardiac involvement becomes a leading cause of morbidity and mortality. By adolescence or early adulthood, many patients develop dilated cardiomyopathy and arrhythmias.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is an X-linked recessive myopathy caused by mutations in the dystrophin gene, which is divided into presymptomatic, early ambulatory, late ambulatory, early non-ambulatory, and late non-ambulatory stages according to its disease progression. Some patients experience non-progressive cognitive developmental delays in the presymptomatic stage. DMD patients gradually develop osteoporosis, cardiomyopathy, decreased respiratory function, delayed puberty, and gastrointestinal symptoms as the disease progresses.

View Article and Find Full Text PDF

A combinatorial oligonucleotide therapy to improve dystrophin restoration and dystrophin-deficient muscle health.

Mol Ther Nucleic Acids

September 2025

Center for Genetic Medicine Research, Children's National Research Institute, Children's National Research and Innovation Campus, Children's National Hospital, Washington, DC 20012, USA.

Despite the proven safety of dystrophin-targeting phosphorodiamidate morpholino oligomer (PMO) therapy, poor delivery of the PMOs limit the efficacy of this dystrophin restoring gene therapy for Duchenne muscular dystrophy (DMD). Limited myogenesis and excessive fibrosis in DMD are pathological features that contribute to the poor efficacy of PMOs. We show that the severe DMD mouse model (D2-) not only replicates these pathological features of DMD but also mirrors the resulting PMO-mediated dystrophin restoration deficit.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a lethal pediatric striated muscle disease caused by loss of dystrophin for which there is no cure. Cardiomyopathy is the leading cause of death amongst individuals with DMD, and effective therapeutics to treat DMD cardiomyopathy are a major unmet clinical need. This work investigated adeno-associated viral (AAV) gene therapy approaches to treat DMD cardiomyopathy by overexpression of the calcium binding proteins S100A1 and apoptosis repressor with caspase recruitment domains (ARC).

View Article and Find Full Text PDF

FAP-CAR-T cells reduce dystrophic muscle fibrosis, improving adeno-associated virus gene transfer efficacy.

Mol Ther Methods Clin Dev

September 2025

Université Paris-Saclay, Univ Evry, Inserm, Integrare Research Unit UMR_S951, Genethon, 91000 Evry-Courcouronnes, France.

Tissue fibrosis is a pathological feature of many diseases including muscular dystrophies such as Duchenne muscular dystrophy (DMD). Fibrosis may limit the effectiveness of gene therapy in muscle impacting on viral dosing but direct evidence is lacking. Strategies to reduce skeletal muscle fibrosis are limited.

View Article and Find Full Text PDF