98%
921
2 minutes
20
Background: Among the many factors determining protein evolutionary rate, protein-protein interaction degree (PPID) has been intensively investigated in recent years, but its precise effect on protein evolutionary rate is still heavily debated.
Results: We first confirmed that the correlation between protein evolutionary rate and PPID varies considerably across different protein interaction datasets. Specifically, because of the maximal inconsistency between yeast two-hybrid and other datasets, we reasoned that the difference in experimental methods contributes to our inability to clearly define how PPID affects protein evolutionary rate. To address this, we integrated protein interaction and gene co-expression data to derive a co-expressed protein-protein interaction degree (ePPID) measure, which reflects the number of partners with which a protein can permanently interact. Thus, irrespective of the experimental method employed, we found that (1) ePPID is a better predictor of protein evolutionary rate than PPID, (2) ePPID is a more robust predictor of protein evolutionary rate than PPID, and (3) the contribution of ePPID to protein evolutionary rate is statistically independent of expression level. Analysis of hub proteins in the Structural Interaction Network further supported ePPID as a better predictor of protein evolutionary rate than the number of distinct binding interfaces and clarified the slower evolution of co-expressed multi-interface hub proteins over that of other hub proteins.
Conclusions: Our study firmly established ePPID as a robust predictor of protein evolutionary rate, irrespective of experimental method, and underscored the importance of permanent interactions in shaping the evolutionary outcome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3022652 | PMC |
http://dx.doi.org/10.1186/1752-0509-4-179 | DOI Listing |
Mol Biol Rep
September 2025
ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400061, India.
Background: Labeo fimbriatus (Bloch, 1795) is a medium-sized South Asian minor carp with ecological significance and emerging aquaculture potential, particularly in polyculture systems with Indian major carps. Despite its wide distribution, it remains underrepresented in phylogenetic studies, and limited genomic resources are available. Here, we report the complete mitochondrial genome sequence of L.
View Article and Find Full Text PDFISME J
September 2025
Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
Although ammonia-oxidizing archaea (AOA) are globally distributed in nature, growth in biofilms has been relatively little explored. Here we investigated six representatives of three different terrestrial and marine clades of AOA in a longitudinal and quantitative study for their ability to form biofilm, and studied gene expression patterns of three representatives. Although all strains grew on a solid surface, soil strains of the genera Nitrosocosmicus and Nitrososphaera exhibited the highest capacity for biofilm formation.
View Article and Find Full Text PDFmBio
September 2025
Department of Biology, Laboratory of Molecular Cell Biology, KU Leuven, Leuven, Flanders, Belgium.
Echinocandins, which target the fungal β-1,3-glucan synthase (Fks), are essential for treating invasive fungal infections, yet resistance is increasingly reported. While resistance typically arises through mutations in Fks hotspots, emerging evidence suggests a contributing role of changes in membrane sterol composition due to mutations. Here, we present a clinical case of () in which combined mutations in and , but not alone, appear to confer echinocandin resistance.
View Article and Find Full Text PDFElife
September 2025
Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, United States.
Wnt proteins are critical signaling molecules in developmental processes across animals. Despite intense study, their evolutionary roots have remained enigmatic. Using sensitive sequence analysis and structure modeling, we establish that the Wnts are part of a vast assemblage of domains, the Lipocone superfamily, defined here for the first time.
View Article and Find Full Text PDFElife
September 2025
Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig Maximilians-Universität München, Munich, Germany.
The rapid emergence of mineralized structures in diverse animal groups during the late Ediacaran and early Cambrian periods likely resulted from modifications of pre-adapted biomineralization genes inherited from a common ancestor. As the oldest extant phylum with mineralized structures, sponges are key to understanding animal biomineralization. Yet, the biomineralization process in sponges, particularly in forming spicules, is not well understood.
View Article and Find Full Text PDF