On the relation between residue flexibility and residue interactions in proteins.

Protein Pept Lett

College of Chemistry, Key Laboratory of Green Chemistry & Technology, Ministry of Education, Sichuan University, Chengdu, China.

Published: May 2011


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

B-factor from X-ray crystal structure can well measure protein structural flexibility, which plays an important role in different biological processes, such as catalysis, binding and molecular recognition. Understanding the essence of flexibility can be helpful for the further study of the protein function. In this study, we attempted to correlate the flexibility of a residue to its interactions with other residues by representing the protein structure as a residue contact network. Here, several well established network topological parameters were employed to feature such interactions. A prediction model was constructed for B-factor of a residue by using support vector regression (SVR). Pearson correlation coefficient (CC) was used as the performance measure. CC values were 0.63 and 0.62 for single amino acid and for the whole sequence, respectively. Our results revealed well correlations between B-factors and network topological parameters. This suggests that the protein structural flexibility could be well characterized by the inter-amino acid interactions in a protein.

Download full-text PDF

Source
http://dx.doi.org/10.2174/092986611794927974DOI Listing

Publication Analysis

Top Keywords

flexibility residue
8
residue interactions
8
protein structural
8
structural flexibility
8
network topological
8
topological parameters
8
flexibility
5
protein
5
relation residue
4
residue flexibility
4

Similar Publications

Molecular hybridization of isoniazid with hydrophobic aromatic moieties represents a promising strategy for the development of novel anti-tubercular therapeutics. In this study, a series of hybrid molecules (5a-i) was synthesized by linking isoniazid with aromatic sulfonate esters via a hydrazone bridge. Molecular docking studies revealed that these compounds interact effectively with the catalytic triad of the InhA enzyme (Y158, F149, and K165), suggesting their potential as InhA inhibitors.

View Article and Find Full Text PDF

Design and Fabrication of Flexible Silk Fibroin/Lanthanide Ion Membranes with Multifunctional Properties of Fluorescence, Humidity Sensitivity, and Conductivity.

ACS Appl Mater Interfaces

September 2025

College of Chemistry and Chemical Engineering, Instrumental Analysis Center of Qingdao University, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qing

Silk fibroin (SF)-based flexible electronic/photonic materials have gained great attention in wearable devices and soft sensors. However, it remains challenging to understand the molecular interaction mechanisms and subsequently fabricate SF-based flexible materials that exhibit fluorescence, humidity sensitivity, and conductivity properties. In this study, by incorporating lanthanide europium ion (Eu), the design and fabrication of a flexible, fluorescent, and conductive SF membrane was proposed.

View Article and Find Full Text PDF

Unlabelled: The rise of β-lactamase-mediated resistance in Gram-negative pathogens has created an urgent need for novel inhibitors to preserve antibiotic efficacy. This study explores the potential of curcumin, a natural polyphenol with known antimicrobial properties, as a broad-spectrum inhibitor of class A serine-β-lactamases (SBLs) through comprehensive computational analysis. Using molecular docking, 200 ns molecular dynamics simulations, and binding energy calculations, we investigated curcumin's interactions with three clinically important SBLs: KPC-3, CTX-M-15, and L2.

View Article and Find Full Text PDF

Background: Previous studies involving cleanup via conventional solid-phase extraction (SPE) materials to overcome matrix effects for the polar organophosphonate and -phosphinate pesticides glyphosate, glufosinate, ethephon, fosetyl, and their various metabolites often showed limitations due to the existence of various matrix compounds in plant commodities with similar polarity. To overcome existing drawbacks, we utilized the unique selectivity provided by metal oxides as SPE materials. These were exploited in a novel automated online SPE-LC-MS/MS method which allowed analyte-specific trapping in the presence of excessive amounts of matrix compounds as typically contained in extracts of the Quick Polar Pesticides (QuPPe) method.

View Article and Find Full Text PDF

In-silico modeling of SHLP6: A novel mitochondrial peptide controlling neurodegeneration and cellular aging.

Comput Biol Med

September 2025

Institute of Biotechnology, Department of Medical Biotechnology, SIMATS Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India. Electronic address:

Small humanin-like peptide-6 (SHLP6), is derived from the mitochondrial genome. The 3D structure of SHLP6 was evaluated using PEPstr, with homology modeling predicting a Cyt-C structure with a DOPE score of -645.717 and a GA341 score of 0.

View Article and Find Full Text PDF