A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Lipid Data Analyzer: unattended identification and quantitation of lipids in LC-MS data. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Motivation: The accurate measurement of the lipidome permits insights into physiological and pathological processes. Of the present high-throughput technologies, LC-MS especially bears potential of monitoring quantitative changes in hundreds of lipids simultaneously. In order to extract valuable information from huge amount of mass spectrometry data, the aid of automated, reliable, highly sensitive and specific analysis algorithms is indispensable.

Results: We present here a novel approach for the quantitation of lipids in LC-MS data. The new algorithm obtains its analytical power by two major innovations: (i) a 3D algorithm that confines the peak borders in m/z and time direction and (ii) the use of the theoretical isotopic distribution of an analyte as selection/exclusion criterion. The algorithm is integrated in the Lipid Data Analyzer (LDA) application which additionally provides standardization, a statistics module for results analysis, a batch mode for unattended analysis of several runs and a 3D viewer for the manual verification. The statistics module offers sample grouping, tests between sample groups and export functionalities, where the results are visualized by heat maps and bar charts. The presented algorithm has been applied to data from a controlled experiment and to biological data, containing analytes distributed over an intensity range of 10(6). Our approach shows improved sensitivity and an extremely high positive predictive value compared with existing methods. Consequently, the novel algorithm, integrated in a user-friendly application, is a valuable improvement in the high-throughput analysis of the lipidome.

Implementation And Availability: The Java application is freely available for non-commercial users at http://genome.tugraz.at/lda. Raw data associated with this manuscript may be downloaded from ProteomeCommons.org Tranche using the following hash: ZBh3nS5bXk6I/Vn32tB5Vh0qnMpVIW71HByFFQqM0RmdF4/4Hcn H3Wggh9kU2teYVOtM1JWwHIeMHqSS/bc2yYNFmyUAAAAAAACl DQ ==

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btq699DOI Listing

Publication Analysis

Top Keywords

lipid data
8
data analyzer
8
quantitation lipids
8
lipids lc-ms
8
lc-ms data
8
algorithm integrated
8
statistics module
8
data
7
algorithm
5
analyzer unattended
4

Similar Publications