Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
β-Cyclocitral is often present in eutrophic waters and is a well known source of airborne and drinking water malodor, but its production and functional ecology are unresolved. This volatile organic compound (VOC) is derived from the catalytic breakdown of β-carotene, and evidence indicates that it is produced by the activation of a specific carotene oxygenase by all species of the bloom-forming cyanobacterium Microcystis. Previous work has shown that β-cyclocitral affects grazer behavior, but the nature of this interaction and its influence on predator-prey dynamics was unresolved. The present study combined analytical and behavioral studies to evaluate this interaction by using Microcystis NRC-1 and Daphnia magna. Results showed that β-cyclocitral was undetectable in live Microcystis cells, or present only at extremely low concentrations (2.6 amol /cell). In contrast, cell rupture activated a rapid carotene oxygenase reaction, which produced high amounts (77 ± 5.5 amol β-cyclocitral/cell), corresponding to a calculated maximum intracellular concentration of 2.2 mM. The behavioral response of Daphnia magna to β-cyclocitral was evaluated in a bbe© Daphnia toximeter, where β-cyclocitral treatments induced a marked increase in swimming velocity. Acclimation took place within a few minutes, when Daphnia returned to normal swimming velocity while still exposed to β-cyclocitral. The minimum VOC concentration (odor threshold) that elicited a significant grazer response was 750 nM β-cyclocitral, some 2,900 times lower than the per capita yield of a growing Microcystis cell after activation. Under natural conditions, initial grazer-related or other mode of cell rupture would lead to the development of a robust β-cyclocitral microzone around Microcystis colonies, thus acting as both a powerful repellent and signal of poor quality food to grazers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10886-010-9877-0 | DOI Listing |