A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Root carbon (C) inputs may regulate decomposition rates in soil, and in this study we ask: how do labile C inputs regulate decomposition of plant residues, and soil microbial communities? In a 14 d laboratory incubation, we added C compounds often found in root exudates in seven different concentrations (0, 0.7, 1.4, 3.6, 7.2, 14.4 and 21.7 mg C g(-1) soil) to soils amended with and without (13) C-labeled plant residue. We measured CO(2) respiration and shifts in relative fungal and bacterial rRNA gene copy numbers using quantitative polymerase chain reaction (qPCR). Increased labile C input enhanced total C respiration, but only addition of C at low concentrations (0.7 mg C g(-1)) stimulated plant residue decomposition (+2%). Intermediate concentrations (1.4, 3.6 mg C g(-1)) had no impact on plant residue decomposition, while greater concentrations of C (>7.2 mg C g(-1)) reduced decomposition (-50%). Concurrently, high exudate concentrations (>3.6 mg C g(-1)) increased fungal and bacterial gene copy numbers, whereas low exudate concentrations (<3.6 mg C g(-1)) increased metabolic activity rather than gene copy numbers. These results underscore that labile soil C inputs can regulate decomposition of more recalcitrant soil C by controlling the activity and relative abundance of fungi and bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1469-8137.2010.03427.xDOI Listing

Publication Analysis

Top Keywords

plant residue
16
residue decomposition
12
carbon inputs
8
soil microbial
8
decomposition rates
8
inputs regulate
8
regulate decomposition
8
fungal bacterial
8
gene copy
8
copy numbers
8

Similar Publications