98%
921
2 minutes
20
Sepsis is one of the leading causes of morbidity and mortality in hospitalized patients worldwide. Molecular technologies for rapid detection of microorganisms in patients with sepsis have only recently become available. LightCycler SeptiFast test M(grade) (Roche Diagnostics GmbH) is a multiplex PCR analysis able to detect DNA of the 25 most frequent pathogens in bloodstream infections. The time and labor saved while avoiding excessive laboratory manipulation is the rationale for selecting the automated MagNA Pure compact nucleic acid isolation kit-I (Roche Applied Science, GmbH) as an alternative to conventional SeptiFast extraction. For the purposes of this study, we evaluate extraction in order to demonstrate the feasibility of automation. Finally, a prospective observational study was done using 106 clinical samples obtained from 76 patients in our ICU. Both extraction methods were used in parallel to test the samples. When molecular detection test results using both manual and automated extraction were compared with the data from blood cultures obtained at the same time, the results show that SeptiFast with the alternative MagNA Pure compact extraction not only shortens the complete workflow to 3.57 hrs., but also increases sensitivity of the molecular assay for detecting infection as defined by positive blood culture confirmation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2954180 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0013387 | PLOS |
J Robot Surg
September 2025
Department of Gynecologic Oncology, Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.
This study was conducted to investigate the techniques and complications of enlarged uterine extraction during minimally invasive surgery for uterine malignancy. The electronic medical record was queried for patients with uterine malignancy and enlarged uterus (≥ 250 g) who underwent primary hysterectomy with laparoscopic or robotic approach. Statistical analysis was performed using Fisher's exact test for categorical variables and Kruskal-Wallis test for continuous variables.
View Article and Find Full Text PDFInt J Med Inform
September 2025
Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA. Electronic address:
Background: Identifying patient-specific barriers to statin therapy, such as intolerance or deferral, from clinical notes is a major challenge for improving cardiovascular care. Automating this process could enable targeted interventions and improve clinical decision support (CDS).
Objective: To develop and evaluate a novel hybrid artificial intelligence (AI) framework for accurately and efficiently extracting information on statin therapy barriers from large volumes of clinical notes.
PLoS One
September 2025
School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao, Shandong, China.
Drug-target interaction (DTI) prediction is essential for the development of novel drugs and the repurposing of existing ones. However, when the features of drug and target are applied to biological networks, there is a lack of capturing the relational features of drug-target interactions. And the corresponding multimodal models mainly depend on shallow fusion strategies, which results in suboptimal performance when trying to capture complex interaction relationships.
View Article and Find Full Text PDFPLoS One
September 2025
Centre for Experimental Pathogen Host Research, School of Medicine, University College Dublin, Dublin, Ireland.
Background: Acute viral respiratory infections (AVRIs) rank among the most common causes of hospitalisation worldwide, imposing significant healthcare burdens and driving the development of pharmacological treatments. However, inconsistent outcome reporting across clinical trials limits evidence synthesis and its translation into clinical practice. A core outcome set (COS) for pharmacological treatments in hospitalised adults with AVRIs is essential to standardise trial outcomes and improve research comparability.
View Article and Find Full Text PDFIEEE Comput Graph Appl
September 2025
Autonomous agents powered by Large Language Models are transforming AI, creating an imperative for the visualization area. However, our field's focus on a human in the sensemaking loop raises critical questions about autonomy, delegation, and coordination for such agentic visualization that preserve human agency while amplifying analytical capabilities. This paper addresses these questions by reinterpreting existing visualization systems with semi-automated or fully automatic AI components through an agentic lens.
View Article and Find Full Text PDF