98%
921
2 minutes
20
Melanoma accounts for 75% of all skin cancer deaths. Pulsed photothermal radiometry (PPTR), optical coherence tomography (OCT) and ultrasound (US) are non-invasive imaging techniques that may be used to measure melanoma thickness, thus, determining surgical margins. We constructed a series of PDMS tissue phantoms simulating melanomas of different thicknesses. PPTR, OCT and US measurements were recorded from PDMS tissue phantoms and results were compared in terms of axial imaging range, axial resolution and imaging time. A Monte Carlo simulation and three-dimensional heat transfer model was constructed to simulate PPTR measurement. Experimental results show that PPTR and US can provide a wide axial imaging range (75 μm-1.7 mm and 120-910 μm respectively) but poor axial resolution (75 and 120 μm respectively) in PDMS tissue phantoms, while OCT has the most superficial axial imaging range (14-450 μm) but highest axial resolution (14 μm). The Monte Carlo simulation and three-dimensional heat transfer model give good agreement with PPTR measurement. PPTR and US are suited to measure thicker melanoma lesions (>400 μm), while OCT is better to measure thin melanoma lesions (<400 μm).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbio.201000078 | DOI Listing |
Rev Sci Instrum
September 2025
Leiden Institute of Physics, Leiden University, 2333CC Leiden, The Netherlands.
Whether at the molecular or cellular scale in organisms, cell-cell adhesion adapts to external mechanical cues arising from the static environment of cells and from dynamic interactions between neighboring cells. Cell-cell adhesion needs to resist detachment forces to secure the integrity and internal organization of organisms. In the past, various techniques have been developed to characterize adhesion properties of molecules and cells in vitro and to understand how cells sense and probe their environment.
View Article and Find Full Text PDFJ Biomater Appl
September 2025
Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
Mechanotransduction plays a pivotal role in shaping cellular behavior including migration, differentiation, and proliferation. To investigate this mechanism more accurately further, this study came up with a novel elastomeric substrate with a stiffness gradient using a sugar-based replica molding technique combined with a two-layer PDMS system. The efficient water solubility of candy allows easy release, creating a smooth substrate.
View Article and Find Full Text PDFACS Omega
August 2025
Department of Functional Materials and Electronics, State Research Institute Centre for Physical Sciences and Technology (FTMC), 02300 Vilnius, Lithuania.
Microbial biofilms present significant challenges in healthcare due to their persistence and resistance to antimicrobial treatments. Microfluidic technologies offer a promising alternative to traditional static systems for studying biofilm dynamics under physiologically relevant conditions. In this study, we present a poly-(dimethylsiloxane) (PDMS)-free microfluidic platform fabricated using off-stoichiometry thiol-ene (OSTE) resin and cyclic olefin copolymer (COC) substrates.
View Article and Find Full Text PDFAdv Healthc Mater
August 2025
Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands.
Engineered heart tissues (EHTs) formed around flexible pillars are used to measure the contraction force of myocytes. When based on cardiac cells derived from human induced pluripotent stem cells (hiPSCs), EHTs capture human cardiac physiology and drug responses in vitro. However, variability in contractile function often arises due to variation in tissue positioning on the pillar.
View Article and Find Full Text PDFJ Funct Biomater
July 2025
CNR NANOTEC-Institute of Nanotechnology, c/o Campus Ecotekne, 73100 Lecce, Italy.
Cell migration assays provide valuable insights into pathological conditions, such as tumor metastasis and immune cell infiltration, and the regenerative capacity of tissues. In vitro tools commonly used for cell migration studies exploit commercial transwell systems, whose functionalities can be improved through engineering of the pore pattern. In this context, we propose the fabrication of a transwell-like device pursued by combining the proton beam writing (PBW) technique with wet etching onto thin layers of polydimethylsiloxane (PDMS).
View Article and Find Full Text PDF