A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

[¹⁸F]fluorodeoxyglucose uptake patterns in lung before radiotherapy identify areas more susceptible to radiation-induced lung toxicity in non-small-cell lung cancer patients. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Our hypothesis was that pretreatment inflammation in the lung makes pulmonary tissue more susceptible to radiation damage. The relationship between pretreatment [(18)F]fluorodeoxyglucose ([(18)F]FDG) uptake in the lungs (as a surrogate for inflammation) and the delivered radiation dose and radiation-induced lung toxicity (RILT) was investigated.

Methods And Materials: We retrospectively studied a prospectively obtained cohort of 101 non-small-cell lung cancer patients treated with (chemo)radiation therapy (RT). [(18)F]FDG-positron emission tomography-computed tomography (PET-CT) scans used for treatment planning were studied. Different parameters were used to describe [(18)F]FDG uptake patterns in the lungs, excluding clinical target volumes, and the interaction with radiation dose. An increase in the dyspnea grade of 1 (Common Terminology Criteria for Adverse Events version 3.0) or more points compared to the pre-RT score was used as an endpoint for analysis of RILT. The effect of [(18)F]FDG and CT-based variables, dose, and other patient or treatment characteristics that effected RILT was studied using logistic regression.

Results: Increased lung density and pretreatment [(18)F]FDG uptake were related to RILT after RT with univariable logistic regression. The 95th percentile of the [(18)F]FDG uptake in the lungs remained significant in multivariable logistic regression (p = 0.016; odds ratio [OR] = 4.3), together with age (p = 0.029; OR = 1.06), and a pre-RT dyspnea score of ≥1 (p = 0.005; OR = 0.20). Significant interaction effects were demonstrated among the 80th, 90th, and 95th percentiles and the relative lung volume receiving more than 2 and 5 Gy.

Conclusions: The risk of RILT increased with the 95th percentile of the [(18)F]FDG uptake in the lungs, excluding clinical tumor volume (OR = 4.3). The effect became more pronounced as the fraction of the 5%, 10%, and 20% highest standardized uptake value voxels that received more than 2 Gy to 5 Gy increased. Therefore, the risk of RILT may be decreased by applying sophisticated radiotherapy techniques to avoid areas in the lung with high [(18)F]FDG uptake.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2010.06.016DOI Listing

Publication Analysis

Top Keywords

[18f]fdg uptake
24
uptake lungs
12
lung
9
uptake patterns
8
radiation-induced lung
8
lung toxicity
8
non-small-cell lung
8
lung cancer
8
cancer patients
8
radiation dose
8

Similar Publications