Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
One task in risk assessment of engineered nanoparticles is toxicological studies. A suitable interpretation of these investigations demands a comprehensive physical-chemical characterization. Here, we present an approach to gain well-dispersed nanoparticles in physiological media. Therefore, a step-by-step procedure is demonstrated on two different tungsten carbide nanopowders which can be transferred to other powders. The procedure includes a comprehensive powder characterization, followed by a preparation of a non-physiologic, electrostatically stable nanoparticle suspension and finally closes with investigations of the particles' behavior in different physiological media. Our study showed that the particles agglomerate in protein-free media. In this context, dependencies of mass- and surface-based nanoparticle concentrations as well as of different physiological media were analyzed. In the presence of bovine serum albumin (BSA) or serum, the agglomeration process is decelerated or, at the appropriate protein amount, prevented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/17435391003605455 | DOI Listing |