Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Understanding the detailed relationship between nanoparticle structure and activity remains a significant challenge for the field of surface-enhanced Raman spectroscopy. To this end, the structural and optical properties of individual plasmonic nanoantennas comprised of Au nanoparticle assemblies that are coated with organic reporter molecules and encapsulated by a SiO(2) shell have been determined using correlated transmission electron microscopy (TEM), dark-field Rayleigh scattering microscopy, surface-enhanced Raman scattering (SERS) microscopy, and finite element method (FEM) calculations. The distribution of SERS enhancement factors (EFs) for a structurally and optically diverse set of nanoantennas is remarkably narrow. For a collection of 30 individual nanoantennas ranging from dimers to heptamers, the EFs vary by less than 2 orders of magnitude. Furthermore, the EFs for the hot-spot-containing nanoparticles are uncorrelated to aggregation state and localized surface plasmon resonance (LSPR) wavelength but are crucially dependent on the size of the interparticle gap. This study demonstrates that the creation of hot spots, where two particles are in subnanometer proximity or have coalesced to form crevices, is paramount to achieving maximum SERS enhancements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja104174m | DOI Listing |