A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Designs for linkage analysis and association studies of complex diseases. | LitMetric

Designs for linkage analysis and association studies of complex diseases.

Methods Mol Biol

Department of Statistics and Probability, Michigan State University, East Lansing, MI, USA.

Published: November 2010


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Genetic linkage analysis has been a traditional means for identifying regions of the genome with large genetic effects that contribute to a disease. Following linkage analysis, association studies are widely pursued to fine-tune regions with significant linkage signals. For complex diseases which often involve function of multi-genetic variants each with small or moderate effect, linkage analysis has little power compared to association studies. In this chapter, we give a brief review of design issues related to linkage analysis and association studies with human genetic data. We introduce methods commonly used for linkage and association studies and compared the relative merits of the family-based and population-based association studies. Compared to candidate gene studies, a genomewide blind searching of disease variant is proving to be a more powerful approach. We briefly review the commonly used two-stage designs in genome-wide association studies. As more and more biological evidences indicate the role of genomic imprinting in disease, identifying imprinted genes becomes critically important. Design and analysis in genetic mapping imprinted genes are introduced in this chapter. Recent efforts in integrating gene expression analysis and genetic mapping, termed expression quantitative trait loci (eQTLs) mapping or genetical genomics analysis, offer new prospect in elucidating the genetic architecture of gene expression. Designs in genetical genomics analysis are also covered in this chapter.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-60761-580-4_6DOI Listing

Publication Analysis

Top Keywords

association studies
28
linkage analysis
20
analysis association
12
analysis
9
studies
8
complex diseases
8
studies compared
8
imprinted genes
8
analysis genetic
8
genetic mapping
8

Similar Publications