A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A semi-supervised learning based method: Laplacian support vector machine used in diabetes disease diagnosis. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pattern recognition methods could be of great help to disease diagnosis. In this study, a semi-supervised learning based method, Laplacian support vector machine (LapSVM), was used in diabetes diseases prediction. The diabetes disease dataset used in this article is Pima Indians diabetes dataset obtained from the UCI Repository of Machine Learning Databases and all patients in the dataset are females at least 21 years old of Pima Indian heritage. Firstly, LapSVM was trained as a fully-supervised learning classifier to predict diabetes dataset and 79.17% accuracy was obtained. Then, it was trained as a semi-supervised learning classifier and we got the prediction accuracy 82.29%. The obtained accuracy 82.29% is higher than other previous reports. The experiments led to the finding that LapSVM offers a very promising application, i.e., LapSVM can be used to solve a fully-supervised learning problem by solving a semi-supervised learning problem. The result suggests that LapSVM can be of great help to physicians in the process of diagnosing diabetes disease and it could be a very promising method in the situations where a lot of data are not class-labeled.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12539-009-0016-2DOI Listing

Publication Analysis

Top Keywords

semi-supervised learning
16
diabetes disease
12
learning based
8
based method
8
method laplacian
8
laplacian support
8
support vector
8
vector machine
8
disease diagnosis
8
great help
8

Similar Publications