Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We observed surfaces and cross sections of thin hydroxyapatite (HA)-coated implants produced by the thermal decomposition method in a patient attending our clinic who underwent implant removal at 80 months due to fracture of the implants. On the implant surfaces of the removed sample, most of the HA had dissolved, and extensive osseointegration was observed where Ti had closely bonded to bone. This indicated that the HA coated on the implant surfaces had disappeared and osseointegration had been established where Ti directly bonded to the bone. In addition, calcium titanate (CaTiO(3)) and HA layers formed by the thermal decomposition method showed no desorption. The results clearly indicate the positive clinical potential of thin HA-coating by the thermal decomposition method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1563/AAID-JOI-D-09-00113.1 | DOI Listing |