Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Time-resolved fluorescence Stokes shift dynamics of a fluorescent probe, 4',6-diamidino-2-phenylindole (DAPI), inside the minor groove of the DNA is measured over five decades in time spans from 100 fs to 10 ns. Two different techniques, fluorescence up-conversion and time correlated single photon counting, are combined to obtain the time-resolved emission spectra of DAPI in DNA over the entire five decades in time. Having the dynamics of groove-bound DAPI in DNA measured over such a broad time window, we are able to convincingly compare our data to earlier time-resolved fluorescence results of a base-stacked probe that replaces a DNA base pair. Results show that the dynamics measured with either the groove-bound or the base-stacked probe are similar in the time span of 100 fs to approximately 100 ps but differ substantially from approximately 100 ps to 10 ns. Our present data also help to reconcile the previously reported molecular dynamics simulation results and provide important clues that the groove-bound water molecules inside DNA are mainly responsible for the slow dynamics seen in native DNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja103387t | DOI Listing |