Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Aim Of The Study: The aim of the present study was to investigate the effects of MeOH extract of PL (PLME) and its fractions on angiogenesis.
Materials And Methods: PLME and its subsequent fractions (methylene chloride, ethyl acetate, n-butanol and aqueous fractions) were evaluated in vitro. Specifically, the anti-angiogenic activities of PLME and its fractions were investigated by measuring their effects on the proliferation, migration, tube formation and phosphorylation of vascular endothelial growth factor receptor (VEGFR)-2 in human umbilical vein endothelial cells (HUVECs). In addition, the in vivo Matrigel plug model was applied to evaluate new vessel formation.
Results: The results revealed that PLME and its subsequent fractions, except for the aqueous fraction, led to significant inhibition of the proliferation, migration, tube formation and VEGFR-2 phosphorylation of HUVECs as well as in vivo angiogenesis.
Conclusions: These findings indicate the potential for the use of PLME in pathological situations involving stimulated angiogenesis, such as inflammation and tumor development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jep.2010.05.064 | DOI Listing |