Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We examined the wavelength dependence of ultraviolet (UV) ra-diation (UVR)-induced melanoma in a Xiphophorus backcross hybrid model previously reported to be susceptible to melanoma induction by ultraviolet A (UVA) and visible light. Whereas ultraviolet B (UVB) irradiation of neonates yielded high frequencies of melanomas in pigmented fish, UVA irradiation resulted in melanoma frequencies that were not significantly different from unirradiated fish. Spontaneous and UV-induced melanoma frequencies correlated with the degree of pigmentation as expected from previous studies, and the histopathology phenotypes of the melanomas were not found in significantly different proportions in UV-treated and -untreated tumor-bearing fish. Our results support the conclusion that a brief early-life exposure to UVB radiation causes melanoma formation in this animal model. These data are consistent with an essential role for direct DNA damage, including cyclobutane dimers and (6-4) photoproducts, in the etiology of melanoma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2889042 | PMC |
http://dx.doi.org/10.1073/pnas.1000324107 | DOI Listing |