98%
921
2 minutes
20
Heparinase II (HepII) is an 85-kDa dimeric enzyme that depolymerizes both heparin and heparan sulfate glycosaminoglycans through a beta-elimination mechanism. Recently, we determined the crystal structure of HepII from Pedobacter heparinus (previously known as Flavobacterium heparinum) in complex with a heparin disaccharide product, and identified the location of its active site. Here we present the structure of HepII complexed with a heparan sulfate disaccharide product, proving that the same binding/active site is responsible for the degradation of both uronic acid epimers containing substrates. The key enzymatic step involves removal of a proton from the C5 carbon (a chiral center) of the uronic acid, posing a topological challenge to abstract the proton from either side of the ring in a single active site. We have identified three potential active site residues equidistant from C5 and located on both sides of the uronate product and determined their role in catalysis using a set of defined tetrasaccharide substrates. HepII H202A/Y257A mutant lost activity for both substrates and we determined its crystal structure complexed with a heparan sulfate-derived tetrasaccharide. Based on kinetic characterization of various mutants and the structure of the enzyme-substrate complex we propose residues participating in catalysis and their specific roles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2888417 | PMC |
http://dx.doi.org/10.1074/jbc.M110.101071 | DOI Listing |
J Am Chem Soc
September 2025
Kekulé Institute for Organic Chemistry and Biochemistry, University of Bonn,Gerhard-Domagk-Straße 1,Bonn 53121,Germany.
Terpene synthases produce a remarkable structural diversity from acyclic precursors through complex carbocation cascades. Here, we report the crystal structure of the bacterial sesterterpene synthase StvirS bound to geranylfarnesyl thiopyrophosphate (GFSPP), revealing a preorganized active site that enforces a defined folding of the C25 backbone. Guided by this structure, active-site engineering at 11 positions yielded 23 enzyme variants and 13 new sesterterpenes.
View Article and Find Full Text PDFDalton Trans
September 2025
Department of Chemistry, IIT Kharagpur, Kharagpur, 721302, India.
The solid-solution alloys of Mn-Zn-Ga and Mn-Zn-Sn have been synthesized by a high-temperature method and structurally characterized by X-ray diffraction studies. The substitutional solid-solution alloys that crystallize in the chiral space group 432 or 432 adopt the A13-type structure (β-Mn). Similar to β-Mn, the 20 atoms in the cubic unit cell are distributed over 8 and 12 Wyckoff positions.
View Article and Find Full Text PDFMol Inform
September 2025
Department of Computational Chemistry, "Coriolan Drăgulescu" Institute of Chemistry Timișoara, Romanian Academy, Timișoara, Romania.
Docking is a structure-based cheminformatics tool broadly employed in early drug discovery. Based on the tridimensional structure of the protein target, docking is used to predict the binding interactions between the protein and a ligand, estimate the corresponding binding affinity, or perform virtual screenings (VSs) to identify new active compounds. This study introduces the ligand B-factor index (LBI), a novel computational metric for prioritizing protein-ligand complexes for docking.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China.
Tailoring the crystalline structure and facet orientation of T-NbO anode electrodes is pivotal for optimizing the Li transport kinetics. Herein, a crystallization engineering strategy is employed to synthesize urchin-like T-NbO microspheres composed of single-crystalline whiskers growing along the (001) orientation. These whiskers are characterized by nearly 100% exposed vertical (001) facets that accelerate Li diffusion.
View Article and Find Full Text PDFACS Chem Biol
September 2025
Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute of Complex Molecular Systems, Technische Universiteit Eindhoven, 5612 AZ Eindhoven, The Netherlands.
The orphan nuclear receptor NR2F6 (Nuclear Receptor subfamily 2 group F member 6) is an emerging therapeutic target for cancer immunotherapy. Upregulation of NR2F6 expression in tumor cells has been linked to proliferation and metastasis, while in immune cells NR2F6 inhibits antitumor T-cell responses. Small molecule modulation of NR2F6 activity might therefore be a novel strategy in cancer treatment, benefiting from this dual role of NR2F6.
View Article and Find Full Text PDF